LLnextgen user manual
For version 0.5.5

G.P. Halkesllnextgen@ghalkes.nl>

31-12-2011

Contents

Contents

1 Introduction
1.1 Extentofreimplementation e

2 Specifying grammars
2.1 Basicsyntax e e e
2.2 Definingtokens e e
2.3 Conflicts e

3 Interfaces
3.1 Nameprefixes e e e e
3.2 Generatedfiles e
3.3 Lexicalanalyser e
3.4 Parserroutine e e e
3.4.1 Multiple parsersinonegrammar e
3.5 Errorhandling e e

4 Other features
4.1 VersionmMacrO v v v i i e e e e e e e
4.2 Includingfiles e e
421 Dependencies e
4.3 Specifyingoptionsinthegrammar L e o
4.4 Returnvalues L e
4.5 LLabort e
4.6 Back-referenceoperator. e
4.7 ReentrantpParsers e e e e e e e
4.8 Thread-safe parsers e
4.8.1 Parserroutines e e
4.8.2 LLmessage and lexicalanalyser aa ...
4.8.3 LLabort
4.9 Symboltables e
4.9.1 Symboltablesandgettext
4.10 Automatictokendeclarations L e
411 %top Ccode o e

5 Examples
5.1 Calculator e e
5.2 Thread-safe parser e e

6 Contact
6.1 Reportingbugs e
6.2 Letmeknow e

Bibliography

A Manual page

25

26

Chapter 1

Introduction

LLnextgen is a (partial) reimplementation of the LLgen EL) {2] parser generator created by D. Grune
and C.J.H. Jacobsvhich is part of the Amsterdam Compiler Kit (ACK). As suchgiiates C source-code
for a text parsing engine from a description of the grammée parsers created use the LL(1) paradigm,
with several extensions to allow for some ambiguities tods®ived without rewriting the grammar.

This manual is not an introduction to parsers or parsinggignas. There are many books on parsing
and compiler construction, for example [1].

Throughout this manual | have indicated where the behawwbut nextgen differs from LLgen with
the@ symbol in the margin. The manual page also provides an cawrof the differences in behaviour
of LLnextgen and LLgen. Furthermore, | have indicated sahierportant issues, that are often overlooked
with a /\ symbol in the margin.

1.1 Extent of reimplementation

LLnextgen implements the complete feature set of LLgen gixize the extended user error-handling with
the%onerror directive and the non-correcting error-recovery. Theddad error-recovery mechanism is
implemented.

The reason for not implementing t@éonerror directive is because it is mostly a hook to allow
research into different error-recovery mechanisms. Thist very useful for regular LLnextgen users.

The non-correcting error-recovery is not implemented beeadt is a lot of work and | think it is not
an improvement over the default algorithm. Although it caoduce fewer error messages, the location
of the reported error can diverge from the location whereptser got stuck. My personal experience is
that compilers that report errors at a different place thbene the parser gets stuck can seriously hinder
interpretation of the generated error-message by the demysier.

170 add to the confusion, there exists or existed anotherranogalled LLgen, which is an LL(1) parser generator. It wasted
by Fischer and LeBlanc.

Chapter 2

Specifying grammars

2.1 Basic syntax

LLnextgen uses an EBNF-like syntax for specifying grammArgrammar consists of rules, which in turn

consist of elements. The elements in an LLnextgen gramneateaminals (or tokens), non-terminals (or
rules), terms, actions and back-reference operators. fdrargar file is also the place to specify several
directives as well as providing code to be copied to the duygnclosed in braces).

Terminals can be either a character literal, specifiedals, or an identifier. LLgen can handle the
following character escape8b’ ,'\f ,\n’ ,’\¢ [\t WV and octal character
codes, for exampl8033' . LLnextgen can also handle’ ,’Wwv' ,\?" ,\" and hex- (@
adecimal escape codes, for exanptéB’ . These all have the same semantics as in C, except for
the hexadecimal escape codes. The hexadecimal escapeotdyleiow you to specify character
literals up to OXFF.

Non-terminals are specified by identifiers. Any non-terminal used in a rhks to appear as a rule
itself elsewhere in the grammar. As non-terminals are ta#ed into C-functions, they can have
arguments. The arguments can be passed in the normal ways.thyy writing a C-expression
enclosed in parentheses. LLnextgen also supports retirasiéSee Section 4.4 for details. Q)

Terms are one or more elements enclosefl end] . A| can be used to specify an alternation (or choice)
between several alternatives.

Actions are pieces of C-code enclosed in braces. To determine thefé¢nel C-code, LLnextgen tries to
match the braces in the code and find the brace matching timngparace of the action. This means
that there is one restriction on the C-code: the number afiogedbraces must match the number of
closing braces. Normally, C-code will satisfy this consttabut if you are usingtdefine s which
contain braces LLnextgen’s efforts to find matching braceg be thwarted.

A further restriction is that comments should not contaie IEontinuations (a backslash followed by
a newline) within the starting and ending delimitets (x/ and//). As this is something human
programmers don't usually do, this is not a big restriction.

Back-reference operatorsare used to avoid code duplication. By specifying in a term, all the (&
elements preceding the term are included in its place. Set@8e.6 for more details.

Terminals, non-terminals and terms can all be followed byptional repetition specification. The
following list summarises the possible repetition spersfie

e A number, specifying the exact number of times the elemesitdappear.

e A +, specifying the element has to appear 1 or more times.

e The lastitem in a term followed by or = operator can be followed hy?
is optional for the last repetition of the enclosing termckalternative of the term can contain an

A =, specifying the element may appear O or more times.

A ?, specifying the element may appear once. This is a shortlaird 1.

+ or + followed by a number indicating the maximum number or tinfesdlement may appeatr.

to indicate that this item

item followed by..? . A good example of its use is in specifying ISO C99 and C++ esywiere

the last item in the enum can optionally be followed by a comma

The LLnextgen grammar can be specified in the LLnextgen gyflae example below is a simplified
extract from the actual grammar file used to build LLnextg@hcourse, in the actual grammar the rules
do have parameters and actions have been specified.

grammar : declaration x

declaration :

C_DECL [/ Top level C-code */
START IDENTIFIER ', IDENTIFIER '}
[= Other declarations omitted for brevity

rule

rule :

identifier

[/ * Return value type * [
<
IDENTIFIER
[

|
IDENTIFIER
] *

St

L

17
EXPR ? /= Parameters x/

C_DECL ? [+ Local variable declarations

productions

productions :

simpleproduction [’|' simpleproduction]

simpleproduction :

[
I
I

DEFAULT
IF C_EXPR

[= Other directives omitted for brevity

element
repeats

«/

)

1

element :
C DECL /= Action code */

LITERAL
I
IDENTIFIER [/ * Can be both a terminal or a non-terminal */
[/ * Return value renaming */
e
IDENTIFIER
s

17
C_EXPR ? /« Parameters =*/

1[!
/ = Optional directives omitted for brevity */
productions

T

BACKREF & The '..." operator */

repeats :
[+ No operator */

I
[

]
NUMBER ?

Ly

NUMBER

DOTQMARK

Note the use of C-style comments. LLnextgen accepts bottylE-somments and C++-style com- @
ments anywhere in the grammar. All capitalised words araitals, although this is simply a convention.
TheC_DECLtoken represents a number of C declarations and statersectesed in braces. TRREXPR
token represents either a parameter list, asli@ andelement , or an expression to be evaluated dur-
ing parsing to resolve a conflict (as $impleproduction). In both cases, th€_EXPRincludes the
enclosing parentheses.

The use of the ruleepeats in simpleproduction could have used the operator to obviate the
need for an epsilon alternative iapeats . However, the LLnextgen grammar includes an action in the
epsilon alternative (omitted in the example) which would In® executed if th@ operator had been used.

2.2 Defining tokens

To use a token in the parser, it first has to be defined. To do dimis can use th&stoken directive,
although as an extension to LLgen, one can alsdtlsdel for this (see Section 4.9). Multiple tokens @
can be declared by a singlétoken directive, for example:

%token IDENTIFIER, NUMBER, C _EXPR;

For quick developmentin the early stages, one can also ase-tioken—pattern option which automatically (5

defines all the unknown identifiers that match the given patis tokens (see Section 4.10).

2.3 Conflicts

In LL(1) grammars, two kinds of conflicts can occur: FIRSREIT conflicts and FIRST/FOLLOW con-
flicts. LLgen names these alternation conflicts and repaetitionflicts respectively (although repetition
conflicts also cover cases that involve repetition opesat@n alternation conflict occurs when two alter-
natives of a rule or a term can start with the same terminalegitition conflict can occur in two cases:
when a term or rule has an empty alternative, and can be fetldwy a token that is also the start of one
of the other alternatives, or when a repeating element witriable repetition count (usingor *) can be
followed by a token that is also the start of (an alternatifjetee element.

One way to deal with conflicts is rewriting the grammar rulest most cases this is the most practical
way. However, in some cases it is possible to write an exjmeslsat determines which way to solve the
conflict at run time. This is what the extended part of ELL{&)about. Using the directiviif at the
start of an alternative with a conflict, followed by a C-exgsien in parentheses, an alternation conflict
can be resolved. For the common expressions (1) and (0),ithetides%prefer and%avoid have
been defined. Using these instead@if (1) and%if (0) will produce faster code. Note that these
directives cannot be used on the last conflicting altereat#/there always has to be a fall-back alternative
for each conflicting token.

An example of an alternation conflict is the following grantma

%start parser, starting_rule;
%token A;

starting_rule :
A

rule

CcoNorONR

If LLnextgen is run on the preceding grammar, with the —wsgboption, it will output the following:

<stdin>:6: error: Alternation conflict with alternative a t <stdin>:5 in
starting_rule
Trace for the conflicting tokens from alternative on line 5:
A [line 5]
Trace for the conflicting tokens from alternative on line 6:
rule [line 7] ->
A [line 12]

The trace of the first alternative is straightforward. Itdfies that on line 5 the tokeA is part of
the first set of the alternative. The trace for the secondradt&ve specifies that the conflicting token is in
rule which is called from line 7. LLnextgen then goes on to shownghrrule the offending token is
mentioned, in this case on line 12.

For repetition conflicts one can use #tavhile directive at the start of a repeating term, again followed
by a C-expression in parentheses. If the expression eealt@isomething other than zero, the repetition
will be continued. If the expression evaluates to zero,ipgr&ill continue with the grammar following
the repetitioA.

In the example below there is a repetition conflict on line Lhnextgen cannot decide whether to
match the optiongh’ at line 15, as the rulenner may also be followed by &’ (through the call to
outer online 4).

1Due to a bug in LLger%while alternatives could not be used-irrepetitions. LLnextgen on the other hand does allow these.

Y%start parser, outest;

outest :
[outer] +
o

If LLnextgen is run on the preceding grammar, with the ——asgoption, it will output the following:

<stdin>:15: error: Repetition conflict in inner
Trace for the conflicting tokens from the first set:
'‘a’ [line 15]
Trace for the conflicting tokens from the follow set:
<- inner from outer [line 10]
<- outer from outest [line 4]
a [line 5]

In the trace, the left arrows<{) indicate that the follow set of the rule being traced (thstfiule
mentioned) is at least partly determined by a call to that atlthe specified location. In this case, the
follow set of the rulegnner is determined by a call in ruleuter on line 10. As this is the last part of
outer , the follow set ofinner is further determined by the location wheyeter is called. The next
line of the trace therefore specifies that there are tokeimnigr ’s follow set which come from the call
to outer on line 4. This call taoouter can be followed by th&’ on line 5, which is the source of the
conflict.

An example of using &while directive to solve this conflict would be the following: ifhifexample,
the’a’ on line 15 must only be matched the first 10 times, one couldgdhe rulénner into:

inner { static int count = 0; } :
b
[
%while (++count <= 10)
-
17?

1

Note however, that using th&tatic variable this way means that you can only call the parser.once
Using a global variable which is reset at some point willalfor calling the parser multiple times.

To aid expression-writing, th&first directive can be used to declare macro’s that evaluate to one
if a rule can start with a given token. For example, declatisfgst fset, rule; declares a macro
namedfset that takes a single argument, the number of a token. If thatrt@an start the rulaule
fset evaluatesto one.

Chapter 3

Interfaces

This chapter details the interfaces expected and provigéldebparsers generated by LLnextgen.

3.1 Name prefixes

All symbols (functions and variables) generated by LLnextgre by default prefixed with LL. To facilitate
multiple parsers in one program, LLnextgen can be instdiieise a different prefix for all symbols with
external linkage. This is accomplished us#dgfine s, so that within the output C file the symbols can
still be used with theit L prefix. To instruct LLnextgen to use a different prefix, u$éprefix directive
like for exampledoprefix PF;

NOTE: it is inadvisable to create symbols using the LL prefix, oy prefix specified wittoprefix
Doing so can cause name-clashes at both compile and link time

3.2 Generated files

LLnextgen generates two files by default: a .c file and a .h fildhe base name of the files is the @
name of the first input file with an optional trailing .g extersremoved, or the name specified by the
——base—name option. The default extensions can be ovemigeising the —extensions option. This

is different from LLgen, which generates three files by d&faa .c file for each input file, a file named
Lpars.c and a file named Lpars.h. ¥aprefix directive has been specified in the grammar, the latter two
files would have the prefix in place of the capital L. The LLg@haviour can be obtained by specifying
the ——Illgen—output—style option.

The header file contairglefine d constants for all the tokens defined throdgtoken and%label
directives, as well as for the symbdEOFILE, LL_MAXTOKNOLL _MISSINGEOFandLL DELETE ()
The tokern#define s are enclosed in a conditional compilation block. If the bpil.L_NOTOKEN$®
#defined , the tokens will not be available.

NOTE: the guard symbol is always naméd _NOTOKENS$egardless of angoprefix directives
and the symboltL. _MAXTOKNQL _MISSINGEOFandLL _DELETEare excluded from the conditional
compilation.

Finally, the header file also contains prototypes for thesgaitself, and if applicable also for (&
LLreissue (see Section 3.3) arld_abort (see Section 4.5).

3.3 Lexical analyser

LLnextgen needs to be provided with a lexical-analyserin@utThe lexical analyser is expected to return
anint ;the token number. The token numbers 1 through 255 have bserved for character literals. This
includes the standard ASCII character set. The tokens defimeugh%token and%label directives
also have constantglefined for them in the generate header file. Token number 0 is noymeserved

for signalling the End-Of-File condition, but using the i@pt—no—eof-zero, this token can be used for(Y)
the nul character. However, you need to ensure that youctdeanalyser returns a proper End-Of-File
marker. Therefore, the token numbet is also reserved for signalling the End-Of-File conditias,s the
#define 'd constantEOFILE in the generated header file. For flex based lexical analygeusalso have

to manually specify that you want to return either of theseiesiinstead of O to signal the End-Of-File
condition. For example by including the pattern:

<x ><<EQF>> { return EOFILE; }

in your lexical analyser.

It is also possible to use the EOFILE token in your grammasvéieer, not all lexical analysers can be
called again without resetting, after having returned ad-Bxf-File condition. In particular, flex scanners
are explicitly specified to give undefined results in thisecakherefore LLnextgen will generate a warning
if you do use EOFILE in your parser. This warning can be disdblith ——suppress-warnings=eofile,
but you must make sure that your lexical analyser will betremewill keep returning the End-Of-File
condition on repeated calls.

Another short warning is in order at this time: when retugiénsingle character as a token, make sure
you return a value greater than zero. By default charactersigned in C, so simply returningchar
variable in the lexical analyser can cause problems. Fo)lex(based lexical analyser the best way to
return a single character iseturn ~ * (unsigned char *) yytext;

The name of the lexical-analyser routine defaults to yytexfacilitate easy integration with (f)lex
generated analysers. To specify a different name for thisirre, supply &+olexical directive in your
grammar. For exampléplexical scanner; would indicate that the analyser to be used is named
scanner .

LLnextgen requires lexical analysers to return the samerto&turned previously after itinserts a token /A
during error recovery. Most lexical analysers do not supttis kind of unput action, so a wrapper has to
be written for the lexical analysers. As this usually leasithe same code for each parser, LLnextgen car(®)
generate a default wrapper by specifying the —generaterterapper. This default wrapper can also be
dumped on standard output by using ——dump-lexer—wrappem Kersion 0.5.1, LLnextgen will issue
a warning if the ——generate—lexer—wrapper option is notifipd. If you do not want the automatically
generated wrapper, specify ——generate—lexer—wrappémyrour options.

To help write wrappers for lexical analysers the varidileeissue is set to the token that needs to
be reissued, oL _NEWTOKENTf no reissue is requested (unless the option ——no—llreigsapecified).
The lexer wrapper is expected to rekketeissue to LL_NEWTOKENafter reissuing the previous token.

NOTE: versions of LLnextgen before 0.3.0 use a different andnmgatible convention for the value of
LLreissue . To distinguish between these versions, use the C mdcrdERSION(see Section 4.1). In-
compatible older versions of LLnextgen do not define thisnmaldowever, if you use ——generate-lexer-wrapper
this difference does not concern you as it is hidden by theige¢ed code.

The result of the last call to the lexical analyser is stordd isymb. The value of_Lsymb is only valid
in %while and%if directivesprecedinga token matching, and in actiofdlowing a token matching. In
the arguments of rules named after the token matchibgymb contains a different valud.Lsymb can
also be used ihLmessage to determine the identity of the token skipped, or the tokefmant of which
a different token will be inserted (see Section 3.5).

3.4 Parser routine

The generated parser must be given a name and a starting ithl¢he/%start directive. The syntax
is %start parser_name, starting.rule;. The generated parser will then have the following
prototype:

void par ser _nane(void);

However, there are three cases where the prototype chamades the option —abort is used, the re-
turn type changes tmt (see Section 4.5). When the option ——thread—safe is useghtiser will take
an argument (see Section 4.8). Finally, when s$karting rule has a return value, the parser will also

10

take an argument (see Section 4.4). The prototype will beeédd the header file, unless the option
——no—prototypes—header is used.

3.4.1 Multiple parsers in one grammar

It is possible to specify multiple parser in the same gramfiter This can be useful if the parsers have
many common rules, or share a single lexical analyser. Thasgers will share common data structures.
If the parsers are not called from one another this causesaiem. For the case where the parser do
call one another, either the option ——reentrant or the aptiethread-safe needs to be specified (See also
Section 4.7 and Section 4.8). LLnextgen will issue a warifiggu don’t specify one of these option but do
use multiple parsers in one grammar. To suppress this wausa —suppress-warnings=multiple-parser.

3.5 Error handling

When the generated parser encounters an error in the inprigsi to find a sequence of token deletions
and insertions such that the token encountered can be ugedtas the grammar. To decide which tokens
to discard, the parser keeps track of the set of tokens whiltlaways be matched by continuing after
the error correction. To determine this set, LLnextgen ssesalled default choices for each alternation.
A default choice is the alternative that is chosen when gtim recover from an error. By default, it @
is the first alternative that needs the minimum number ofrieke complete. This is a slight deviation
from the LLgen way of choosing a default choice, as LLgen tds@s the complexity of the alternatives
into account. There is also a difference in the handling eftavoid directive. LLnextgen deems all
alternatives marked witbavoid equal and simply chooses the first (if they are the shortéstraltives
that is), while LLgen chooses the last.

These differences are not very large, and can be circumyéntsepecifying @odefault directive on
the alternative of choice. It should be noted that¥default directive is also an effective means of error
recovery in the actions. It is usually easiest to write aipactvithout regard to the validity of the token
text, especially when the token text is expected to be sangetther than a keyword or operator. To direct
the parser to use a different action to handle these sitgtame might use the following construction:

[
I
I
]

For terms with a variable repetition count (i.e. terms fakal by+, » or ?), the default is to assume a
minimal number of repetitions. If however it is desirableriake the parser to go into the repetition if one
of the tokens of the default choice within the repetitioneqms, &6persistent directive can be added
at the start of the term.

The parser calls the routine LLmessage, which has to beged\iy the parser writer, to indicate either
a deletion or an insertion of a token. LLmessage takesmneparameter, which can have the one of the
following values:

IDENTIFIER { / =* add to symbol table x/ }
NUMBER { k extract value from text *[}

%default MISSING_EXPRESSION / * No action =/

LL_DELETE to indicate that the parser is about to discard the tokentwibn numbetLsymb.

LL_M SSI NGEOF to indicate that the parser expected the end of input, anbdatdo discard the token
with token numbet.Lsymb.

Any other value to indicate the parser is about to insert a token with thatlmembefore the token with
token numbetLsymb.

Note that LLgen uses the fixed values O ot _DELETEand —1 for LL_MISSINGEOF. Because (9
LLnextgen uses 0 as a regular token number when the optioo—eaf-zero is used, the value 0 would

11

have two meanings. Therefore the use of the hard coded v@ked—1 is deprecated, and all new parsers

should usd.L _DELETEandLL _MISSINGEOFinstead.
To make development quicker, a default LLmessage routimebea generated using the option @

——generate—limessage. This routine can also be dumpeandast output by specifying the option
——dump-limessage on the command line. The default versiartteen be used as a starting point for

a more elaborate message printing routine.

12

Chapter 4

Other features

This chapter describes several features LLnextgen prewider the standard LLgen feature set. These(Y)
have been created to make development easier.

4.1 \ersion macro

To distinguish different interface versions, LLnextgefinles the C macrbL _'VERSIONwhich is affected
by %prefix . It has been defined since version 0.3.0. The value of theariadhe version nhumber
encoded as a hexadecimal number, with two digits per versiomber position. The number for version
0.3.0 is therefore 0x000300. Currently, the only interfamavhich distinguishing versions is necessary is
thelLLreissue variable (see Section 3.3).

4.2 Including files

LLnextgen has a file inclusion mechanism, similar to#irclude mechanism in C. To include another
grammar file use%include " fil ename"; . The filename may include C-style escaped characters.
LLnextgen tries to prevent you from including files recuedyy and will abort with an error if it detects
this.

4.2.1 Dependencies

The include mechanism also introduces a dependency situdthis requires proper handling in Makefiles.
To help developers, LLnextgen can provide dependencynmdition for its input files. Using the option
——depend will print a line with the names of the files that Wélcreated, followed by a semicolon, followed
by all the input files that will be used to create the outpusfi®everal modifiers exist to change the output
(see Appendix A).

A problem that already existed with LLgen is that to find outiethheader files the generated code
needs, one needs to generate the code. However, for depgrgiameration it is undesirable to already
generate the parser code. Therefore LLnextgen adds amdptisimply dump all the top-level C-code
(——depend-cpp). Piping this through the C preprocessawallependency generation to proceed without
generating the actual parser. For example:

LLnextgen --depend-cpp grammar.g | gcc -E -MM -MP -MG -MT ’‘gr ammar.o’ -

can be used to generate dependency informatiogrionmar.o , using gcc. This does of course require
that the input is syntactically correct.

13

4.3 Specifying options in the grammar

As options for LLnextgen can be specific to a grammatr, it isdalgo allow grammar writers to specify the
options in the grammar as well. This can be done withaptions directive. Thedooptions directive
must be followed by a double quoted string with options. QObplyg options can be specified and the
leading dashes must be omitted. The string is processed$tyl€escaped characters.

4.4 Return values

From LLnextgen version 0.4.0, rules can have return valliesuse return values, a rule needs to have a
return type. This can be specified by naming the desired tgpeden &’ and >’ after the name of the
rule. The name of the type can consist only of identifiers aridperators. To use a type that contains
other characters (for example th€ tharacter for C++ templates) you need to usgmedef

The returnvalue of a rule is the last value assigned to therg¢ed local variableLretval . LLretval
will by default be filled with O bytes, unless the option ——mot-lIretval is used.

For each rule that is called, a local variable is createduliiatontain the value returned by that rule.
This variable can be freely used in your C code. By defaudtt tlariable will have the name of the rule
that returned the value. However, by using an identifierased in <’ and >’ the variable can be given a
name of your choice. Two rules can also use the same variabéturn their value, if they have the same
return type. The calculator example in Section 5.1 usesrreflues.

If the starting rule for a parser has a return value, the pyptfor the parser is changed. The parser
will take a single argument, which is a pointer to a variableere the return value of the rule should be
stored. It's type is therefore a pointer to the type namedhagéturn type of the rule. For thread safe
parsers, the return value argumentis the second argument.

LLnextgen will also try to warn you if a rule returns a valuat the returned value is ignored. However,
because LLnextgen does not look inside code segments,uinagssthat a value returned before a code
segment is used in the subsequent code. The same holds fonemts passed to a subsequent rule. If
you do not intend to use the value returned from the rule, yourename its return value kd discard
LLnextgen will not warn about return values assignetllitdiscard , and will not create a local variable
to hold the returned value.

45 LLabort

It is not always desirable to continue parsing after an erffir accommodate this, LLnextgen can be
instructed to generate a routine called LLabort. This rmikias to be passed one integer with a value other
than 0. As mentioned in Section 3.4, this option changes thtype of the parser routine such that it
returns arint . The value returned is O if the parser completed normallg,the value passed to LLabort
otherwise.

4.6 Back-reference operator

The back-reference operator.() can be used in a term to prevent code duplication. All thenelgs
preceding the term are copied in its place. Note that this means you cannot use labels (for use with
goto) in referenced actions, and static variables will be dwéd.

This construct is most usefull in the situations like comseparated parameter lists, which are usually
specified as follows:

parameterList :
type
IDENTIFIER
{1 * code =/}
[

type
14

IDENTIFIER
{/ * code =/}
] *

where type is a non-terminal and IDENTIFIER a terminal. Whke back-reference operator this can be
specified in the following, shorter, way:

parameterList :
type
IDENTIFIER
{1 * code =/}

Note that only the elements in the enclosing term are copiedexample, in:

rule :

]*

only the literal'b’ is copied, and not the liter&d’ because it is outside the enclosing term.

4.7 Reentrant parsers

The parsers generated are not reentrant by default, cpmdracLgen parsers. To make the parsers reen@
trant NOTE: not thread-safe!), use the —reentrant option. This makasssible for the parser to call
itself. This is different from running two parsers simuksusly in different threads. See Section 4.8 for
information on thread-safe parsers.

Calling the parser will change the state of the lexical aselywhich the currently running parser relies
on. Itis therefore important to use a reentrant lexical gs&l as well, when using reentrant parsers. Flex
provides these from versions after 2.5.4a (usitgption reentrant or ——reentrant). Older versions
of flex do provide a way to switch between buffers, but thishrodtfails to save the contentsygtext
and is therefore unsuitable for most cases. It is possibsave yytext yourself and thereby still use the
buffer switching mechanism flex provides.

Reentrant parsers are a way to implement file inclusion wipegiic tokens are expected after the
include command. For example, in LLnextgen a semicolors(gxipected after the string containing the
file name. It is of course also possible to incorporate thegeition of include statements completely in
the lexical analyser. However, that would cause a subsatartiount of work if for example comments are
to be allowed between the tokens as well. Below is the (sfiefd)i code from the LLnextgen grammar:

INCLUDE

[
STRING

{ token = newToken(); }

%default
MISSING_STRING /+ token is NULL by default */

15

if (token != NULL) {
if (openinclude(token))
parser();
freeToken(token);

}

When the end of an include file is reached, the lexical analyseds to return the end-of-file token and
switch back to the previous file. However, returning the efifile token may cause error messages from
the parser. To provide proper indication of where (what iinehich file) the error is, the line number and
file name information should not be reset until the next toketio be retrieved from the lexical analyser.
When using flex this can be achieved in the following way:

int switchBack = 0;

int yywrap(void) {

switchBack = 1;

}

int lexerWrapper(void) {
if (LLreissue == LL_NEW_TOKEN) {
if (switchBack) {
/= switch back to previous lexer state */

}

} else {

}
}

As you can see, this requires a hand crafted lexer wrapper.

4.8 Thread-safe parsers

LLnextgen can also generate thread-safe parsers. Thigjusred when multiple instances of the same
parser are to run in parallel. To make LLnextgen generateemthsafe parser, the option ——thread-safe
needs to be specified. This will define the matta THREADSAFE (which is affected byoprefix)

and change the interface to several functions. The sedbelosv detail the changes to the interface with
respect to the standard interface. For an example, see &@Hapt

4.8.1 Parser routines

Parser routines for thread-safe parsers take an argumbistaigument is meant for passing data to and
from the parser. The argument passed is available to altihmecgenerated as part of the parser through
the macrd_Ldata . By default this argumentis of typsid *. To change the type of the argument, the
%datatype directive can be used. Its syntax is as follows:

%datatype "type" [, "header file"];

The first argument is the type of the argument to the parstrefype is not a standard C type, inclusion of
a header file with the type declaration is required. The megiheader file can be specified with the second
argument. By default the header file is assumed to be a loedandile. However, if the string is enclosed
in’<"and '>’, the header is assumed to be a system header filéd#itatype is used in a non-thread-safe
parser, LLnextgen will issue a warning which can be supgessth ——suppress—warnings=datatype.

16

4.8.2 LLmessage and lexical analyser

TheLLmessage function, as well the lexical analyser both have an extrament named.Lthis . It
contains the parser state and is of tgbeict LLthis * . It also contains a member namielddata _
which contains the user data. The mattalata expands td_Lthis->LLdata _to ease access. Itis
intended that the user data contained in this member alsaiosrthe state for the lexical analyser. Note
that the name of the type and the name of the macro are chapgedbprefix directive, but the name of
the argument is not.

For LLmessage, the new signature is:

void LLmessage(struct LLthis * LLthis, int token);

4.8.3 LLabort
If the LLabort function is enabled with the ——abort option, its signatsrehanged into:

void LLabort(struct LLthis * LLthis, int retval);

4.9 Symbol tables

When printing error messages, it is often desirable to hastigzg associated with a token number. To
accommodate this, LLnextgen can create a symbol tabledtisenoption ——generate—symbol—table).

By default all tokens that have been created Wittoken have as associated string the token name
itself. For example, ifotoken IDENTIFIER; appears somewhere inthe grammar, the string associated
with the token number for IDENTIFIER would be "IDENTIFIERThe default for the character literals
is the table defined in the LLnextgen source code. For theackens up to and including space and for
character 127, itis the name of the control character eadlws<>. For characters between space (32) and
127 it is the character itself enclosed in single quot§sgnd for all other characters it is the hexadecimal
C-style escape code enclosed in single quotes.

All these defaults can be overridden by #ttabel directive. Its syntax is:

%label token, string;

t oken can be both a character literal or an token identifier. Stisrautput unprocessed to the output file.
A token identifier does not have to be declared by%oken directive, unless the option
——no-allow—label-create has been specified.

To use the symbol table, use the functlidrgetSymbol . It takes a token number as only argument,
and returns a pointer to a string constant, or NULL if the tokember is invalid.

4.9.1 Symbol tables and gettext

For internationalised programs, the strings returnedLhgetSymbol may need to be translated.
LLnextgen provides the ——gettext option, which will enstlnat all symbol names specified byaabel
directive are enclosed in a macro call. The macro will expanithe string itself. This way, one can use
xgettextto extract the strings to be translated. The default macnoeniaN_, because that is what most
people use. A guard will be included such that compilatiothaut gettext is possible by not defining the
guard. The guard is set to USHLS by default. Translations will be done automatically ingetSymbol

in the generated parser through a call to gettext. The —exgeiption takes optional names for the macro
and guard, separated by a comma, as arguments.

4.10 Automatic token declarations
Note: the following options are not always available. Ituiggs the POSIX regex API. If the POSIX regex

API is not available on your platform, or the LLnextgen binaras compiled without support for the API,
you will not be able to use this option.

17

In the early stages of development it can be a nuisance to teaglefine all the tokens used in the
grammar, simply to test for conflicts. To mitigate this pebl LLnextgen provides the —token—pattern
option. The argumentto the —token—pattern option is aaegupression that is used to test if an unknown
identifier is meant to be a token, or maybe is a misspelledraiee.

When the grammar has stabilised, the ——dump—tokens canedetagenerate a list of token decla-
rations for the identified tokens. The default is to outputreyle %token directive which includes all
token definitions. The ——dump-tokens takes a single odtemgament which modifies the way the dec-
larations are printed. Theeparatemodifier makes LLnextgen output a separgdtoken directive for
each identifier, while théabelsmodifier makes LLnextgen outputdalabel directive for each identifier.
The text for the label is the name of the identifier. If tabelsmodifier is used in combination with the
——lowercase—symbols option, the text for the label willteémonly lowercase characters.

For example, given the following grammar:

rule:
TOKEN
IDENTIFIER

1

using the options —token—pattern="[A-Z]+$ and —dumkeis will result in the output:
%token TOKEN, IDENTIFIER;

If instead —token—pattern="[A-Z]+$ ——dump-tokens=labe-lowercase—symbols is used, the output
will be:

%label TOKEN, "token";
%label IDENTIFIER, "identifier";

Without ——dump-tokens the grammar will be accepted as ifath@ve declarations were included in the
grammar.

4.11 Y%top C code

Sometimes it is necessary to include some definitions befoyether code in the generated parser file. To
facilitate this, a single section of C code may be marked petale, by prefixing it with %top.

18

Chapter 5

Examples

This chapter contains two examples. The first is a very siragleulator, which shows basic LLnextgen
use and a sophisticated usegivhile . The second is an example of the thread-safe parser inderfac

Warning: when copying the text below, make sure that you remove agg pambers and take care
to ensure all characters in your text file are ASCII characéed not UTF-8 or other characters. Another
option is to use the example files from the documentatiorctirg.

5.1 Calculator

The file below shows a very simple calculator. It uses onlgdet numbers, and can add(subtract{),
divide (/'), multiply (+), take the modulo&), and calculate powers {.

%start calculator, input;

%label NUM, "number";

%options "generate-lexer-wrapper generate-limessage ge nerate-symbol-table";
%lexical lexer,;

{
#include <stdlib.h>

#include <stdio.h>
#include <ctype.h>
#include <math.h>

static int value;

enum states {
START,
NUMBER

h

int lexer(void) {
enum states state = START;
int c;

value = 0;
while ((c = getchar()) != EOF) {
switch (state) {

case START:
if (isspace(c) && c !'= '\n") {
[= Skip white space, except for newlines. */
continue;

} else if (isdigit(c)) {

19

/ = Digits mean a number! */
state = NUMBER;
value = ¢ - 0}

break;
}
/= Simply return all other characters and let the

parser error handling sort it out if necessary. */
return c;

case NUMBER:
/+ Read all digits and push back the non-digit, so
we can reread that the next time. */
if (lisdigit(c)) {
ungetc(c, stdin);

return NUM;
}
value = value * 10 + (c - '0’);
break;

}
}

/* We're done. x/
return EOFILE;

}
/* Simple main routine to fire up the calculator. */
int main(int argc, char +*argv[]) {
printf("LLnextgen integer-calculator example. Press "C o r "D to end.\n");
calculator();
return O;
}
/ = Define the operator priorities. A table would have been poss ible
as well, but this is just as clear and requires less memory. * [

int getPriority(int operator) {
switch(operator) {
case -
case '+
return O;
case I
case ‘%'
return 1;
case ' '
return 2;
case "
return 3;
}

/= This should never happen. */
abort();

\n' x [+ Empty lines should be skipped. * [

expression(0)

{
}

printf("Answer: %d\n", expression);

20

\n' + / += Empty lines should be skipped. */

expression<int>(int priority) :
[= Expressions are factors (numbers, negated expressions and

expressions between parentheses) followed by operators,
followed by expressions with higher priority. */

factor<LLretval>

]

*

[+ By renaming the return value of expression to LLretval, we
immediately set the return value of this rule. */

%while (getPriority(LLsymb) >= priority)
/= The %while directive says to keep accumulating operators
as long as they have equal or higher priority. */

1

expression<intermediate>(getPriority(’-") + 1)

[+ The getPriority() + 1 means that -’ is left associative.
If it needs to be right associative, this needs to be
getPriority().

Also note the explicit use of -’ instead of LLsymb. This
is necessary as LLsymb has changed after matching -

{
LLretval -= intermediate;
}
"
expression<intermediate>(getPriority('+') + 1)
{
LLretval += intermediate;
}
—_
expression<intermediate>(getPriority(’ *') + 1)
{
LLretval *= intermediate;
}
1/!
expression<intermediate>(getPriority(’/') + 1)
{
LLretval /= intermediate;
}

04
expression<intermediate>(getPriority('%’) + 1)

{
}

"~

LLretval %= intermediate;

expression<intermediate>(getPriority("™) + 1)

{
}
/

LLretval = (int) pow(LLretval, intermediate);

* Note: an expression can also be just a number or parenthesise

21

«/

expression, so there can also be 0 operators. Hence the *. o/

1

factor<int> :
1(!
expression<LLretval>(0)

'y

' expression(1)

{
LLretval = - expression;
}
I
NUM
{
LLretval = value; / * value is set by the lexical analyser. */
}

The main thing to note is the use @while to achieve operator precedence. Each time an operator is
matchedgexpression is called recursively to match a part of the input contairondy operators with
greater precedence. Aftexpression is done with matching the subexpression, more operators are
matched at the current level or higher. This can be used irpders as well.

5.2 Thread-safe parser

The parser below does not do anything particularly usefuis simply meant to show the interface for
thread-safe parsers. The parser uses the following he&aler fi

#ifndef DATA_H
#define DATA_H

struct data {

char =+ string;

int index, dontStop;
I3

#endif
And this is the parser:

%options "thread-safe abort generate-lexer-wrapper gene rate-symbol-table";
%datatype "struct data =" "data.h";

%start parser, rule;

%lexical lexer;

rule :
a'+

1

{

#include <stdio.h>
#include <stdlib.h>

int lexer(struct LLthis * LLthis) {
return LLdata->string[LLdata->index++];

}

22

void LLmessage(struct LLthis * LLthis, int LLtoken) {

switch (LLtoken) {
case LL_MISSINGEOF:
fprintf(stderr, "Expected %s, found %s.\n",
LLgetSymbol(EOFILE), LLgetSymbol(LLsymb));
break;
case LL DELETE:
fprintf(stderr, "Unexpected %s.\n",
LLgetSymbol(LLsymb));
break;
default:
fprintf(stderr, "Expected %s, found %s.\n",
LLgetSymbol(LLtoken), LLgetSymbol(LLsymb));
break;

}

if (ILLdata->dontStop)
LLabort(LLthis, 1);

}
int main(int argc, char +*argv[]) {
struct data data;
int i
for (i = 1; i < argc; i++) {
data.string = argvfi];
data.index = 0;
[+ Don't stop for odd numbered arguments. */
data.dontStop = i & 1;
if (parser(&data) == 1) {
printf("Failed at argument %i\n", i);
exit(EXIT_FAILURE);
}
}
exit(EXIT_SUCCESS);
}
}

23

Chapter 6

Contact

6.1 Reporting bugs

If you think you have found a bug, please check that you areguiie latest version ofLnextgen
[http://os.ghalkes.nl/LLnextgen]. When reporting bugs, please include a minimal grammar
that demonstrates the problem. Bug reports can be setintextgen@ghalkes.nl>

6.2 Let me know

If you have suggestions for improving LLnextgen, write mesamail at<llnextgen@ghalkes.nl>

If you use LLnextgen in one of your programs, please let menkr®end me an e-mail at the afore-
mentioned address, preferably with a link to your project ahether you would like to be mentioned on
the LLnextgen webpage.

24

Bibliography

[1] Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs, and Koen @ngendoenModern Compiler Design
John Wiley & Sons, Ltd., 2000.

[2] Ceriel J. H. Jacobs. Some topics in parser generatiorchfiieal Report IR-105, Department of

Computer Science, Vrije Universiteit, Amsterdam, 1998tp://www.cs.vu.nl/ ~ceriel/
LLgen.html

25

Appendix A

Manual page

NAME

LLnextgen — an Extended-LL(1) parser generator

SYNOPSIS

LLnextgen [OPTIONG[FILES

DESCRIPTION

LLnextgen is a (partial) reimplementation of the gen ELL(1) parser generator created by D. Grune and
C.J.H. Jacobs (note: this is not the same ad ttgeen parser generator by Fischer and LeBlanc). It takes
an EBNF-like description of the grammar as input(s), andipoes a parser in C.

Input files are expected to end in .g. The output files will havemoved and .c and .h added. If the input
file does not end in .g, the extensions .c and .h will simply daea to the name of the input file. Output
files can also be given a different base name using the optibase—name (see below).

OPTIONS

LLnextgen accepts the following options:

—c, ——mMmax—compatibility Set options required for maximum source-level compatibilihis is different
from running asLLgen, as all extensions are still allowed. LLreissue and theqtypies in the
header file are still generated. This option turns on-thigen—arg—style ——llgen—escapes—only
and—-llgen—output—styleoptions.

—e, ——warnings—as—errorsTreat warnings as errors.

—Enum, —error—limit=num Set the maximum number of errors, befatenextgen aborts. Ifnumis set
0, the error limit is set to infinity. This is to override the@rlimit option specified in the grammar
file.

—h[which], ——help[=which] Print out a help message, describing the options. The agtiehich argu-
ment allows selection of which options to primthichcan be set to all, depend, error, and extra.

26

-V, ——version Print the program version and copyright information, anid. ex

—v([level, ——verbose[#evel Increase (without explicit level) or set (with explicit lely the verbosity level.
LLnextgen uses this option differently thdr_gen. At level 1,LLnextgen will output traces of the
conflicts to standard error. At level 2] nextgen will also write a file named LL.output with the
rules containing conflicts. At level 8L nextgen will include the entire grammar in LL.output.
LLgen will write the LL.output file from level 1, but cannot genesatonflict traces. It also has an
intermediate setting betweéhnextgen levels 2 and 3.

—w[warningg, ——suppress—warnings[warningg Suppress all or selected warnings. Available warnings
are: arg-separator, option-override, unbalanced-c,iptedparser, eofile, unused{identifier>],
datatype and unused-retval. The unused warning can sugpaltesarnings about unused tokens
and non-terminals, or can be used to suppress warnings apecific tokens or non-terminals by
adding a colon and a name. For example, to suppress warnisgpges about FOO not being used,
use—-wunused:FOQ Several comma separated warnings can be specified with i @n the
command line.

——abort Generate the LLabort function.

——base—namerame Set the base name for the output files. Normallypextgen uses the name of the
first input file without any trailing .g as the base name. Tlpsian can be used to override the
default. The files created will beamec andnameh. This option cannot be used in combination
with ——llgen—output-style

——depend[=nodifier§ Generate dependency information to be used byrthke(1) program. The mod-
ifiers can be used to change the make targets (tatrgetgets>, and extra-targetsitargets-) and
the output (filexfile>). The default are to use the output names as they would beedrbeprunning
with the same arguments as targets, and to output to standgrdt. Using the targets modifier, the
list of targets can be specified manually. The extra-tangetsifier allows targets to be added to the
default list of targets. Finally, the phony modifier will agtdony targets for all dependencies to avoid
make(1) problems when removing or renaming dependencies. $Hilss thegcq1) -MP option.

——depend-cppDump all top-level C-code to standard out. This can be usegetwerate dependency
information for the generated files by piping the output fioomextgen through the C preprocessor
with the appropriate options.

——dump-lexer—wrapper Write the lexer wrapper function to standard output, and exi
——dump-limessageWrite the default LLmessage function to standard outpud,exit.

——dump-tokens[=modifie] Dump %token directives for unknown identifiers that match-thtoken—
pattern pattern. The default is to generate a single %token diregtith all the unknown identifiers
separated by comma’s. This default can be overriddemadgifier The modifierseparatgproduces
a separate %token directive for each identifier, whaleel produces a %label directive. The text
of the label will be the name of the identifier. If thedbel modifier and the-—lowercase—symbols
option are both specified the label will contain only loweseaharacters.

Note: this option is not always available. It requires thePOregex API. If the POSIX regex API
is not available on your platform, or tHd_.nextgen binary was compiled without support for the
API, you will not be able to use this option.

——extensionstist Specify the extensions to be used for the generated files. lighmust be comma
separated, and should not contain the . before the extengiafirst item in the list is the C source
file and the second item is the header file. You can omit thensida for the C source file and only
specify the extension for the header file.

——generate—lexer—wrapper[yes—nq Indicate whether to generate a wrapper for the lexical aealy
As LLnextgen requires a lexical analyser to return the last token rethafter detecting an error
which requires inserting a token to repair, most lexicalyseas require a wrapper to accommodate

27

LLnextgen. As it is identical for almost each grammat,nextgen can provide one. Use—dump—
lexer—wrapper to see the code. If you do specifiy this optibhnextgen will generate a warning,
to help remind you that a wrapper is required.

If you do not want the automatically generate wrapper yowkhspecifiy this option followed by
=no.

——generate—limessag&enerate ahl messagéunction.LLnextgen requires programs to provide a func-
tion for informing the user about errors in the input. Whemealeping a parser, it is often desirable
to have a default LmessageThe provided_Lmessagés very simple and should be replaced by a
more elaborate one, once the parser is beyond the firstggdtese. Use—dump—limessageo see
the code. This option automatically turns-eAgenerate—symbol-table

——generate—symbol-tableGenerate a symbol table. The symbol table will contain g#rifor all tokens
and character literals. By default, the symbol table coistahe token name as specified in the
grammar. To change the string, for both tokens and charkiteterls, use the %label directive.

——gettext[=macro,guard Add gettext support. A macro call is added around symboktablries gen-
erated from %label directives. The macro will expand to thmg itself. This is meant to allow
xgettext(1) to extract the strings. The default is,Nbecause that is what most people use. A guard
will be included such that compilation without gettext isspible by not defining the guard. The
guard is set to USEILS by default. Translations will be done automatically indetSymbol in the
generated parser through a call to gettext.

——keep—dir Do not remove directory component of the input file-name wdreating the output file-name.
By default, outputs are created in the current directoryis Bption will generate the output in the
directory of the input.

——llgen—arg-styleUse semicolons as argument separators in rule heademextgen uses comma’s by
default, as this is what ANSI C does.

——llgen—escapes—onlYnly allow the escape sequences definetllyen in character literals. By default
LLnextgen also allows\a, \v, \?,\”, and hexadecimal constants with.

——llgen—output—style Generate one .c output per input, and the files Lpars.c ancslipanstead of one
.c and one .h file based on the name of the first input.

——lowercase—symbolsConvert the token names used for generating the symboltaldever case. This
only applies to tokens for which no %label directive has bemecified.

——no-allow—label-createDo not allow the %label directive to create new tokens. Nb#t this requires
that the token being labelled is either a character literal &octoken directive creating the named
token has preceded the %label directive.

——no-arg—countDo not check argument counts for rules. LLnextgen checkghane rule is used with
the same number of arguments as it is defined. LLnextgen alscks that any rules for which a
%start directive is specified, the number of argumentsis 0.

——no—eof-zeroDo not use 0 as end-of-file toke(f)lex(1) uses 0 as the end-of-file token. Other lexical-
analyser generators may use —1, and may use 0 for somethan(ge}. the nul character).

——no—init-llretval Do notinitialiseLLretval with O bytes. Note that you have to take care of initialisatio
of LLretval yourself when using this option.

——no-line—directives Do not generatéline directives in the output. This means all errors will be repdr
relative to the output file. By defaultinextgen generate#line directives to make the C compiler
generate errors relative to thenextgen input file.

——no-llreissue Do not generate theLreissuevariable, which is used to indicate when a token should be
reissued by the lexical analyser.

28

——no—prototypes—headerDo not generate prototypes for the parser and other furgiiotihe header file.

——not—only—reachableDo not only analyse reachable rulés.nextgen by default does not take unreach-

able rules into account when doing conflict analysis, astlbas cause spurious conflicts. However,
if the unreachable rules will be used in the future, one médigiady want to be notified of problems

with these rulesLLgen by default does analyse unreachable rules.

Note: in the case where a rule is unreachable because thaltelgative of another reachable rule
that mentions it is never chosen (because of a %avoid diggcthe rule is still deemed reachable for
the analysis. The only way to avoid this behaviour is by dairgcomplete analysis twice, which is

an excessive amount of work to do for a very rare case.

——reentrant Generate a reentrant parser. By defdLllijextgen generates non-reentrant parsers. A reen-

trant parser can be called from itself, but not from anothezad. Use —thread—safe to generate a
thread-safe parser.

Note that when multiple parsers are specified in one gramusarg multiple %start directives), and
one of these parsers calls another, either the ——reentptinhmr the ——thread-safe option is also
required. If these parsers are only called when none of thersis running, the option is not neces-
sary.

Use only in combination with a reentrant lexical analyser.

——show-dir Show directory names of source files in error and warning aggss These are usually

omitted for readability, but may sometimes be necessaryrdoing errors.

——thread—safe Generate a thread-safe parser. Thread-safe parsers aanib@arallel in different threads

of the same program. The interface of a thread-safe parskifésent from the regular (and then
reentrant) version. See the detailed manual for more detail

——token—pattern=pattern Specify a regular expression to match with unknown idemsfiesed in the

grammar. If an unknown identifier matched,nextgen will generate a token declaration for the
identifier. This option is primarily implemented to aid inetfirst stages of development, to allow
for quick testing for conflicts without having to specify #le tokens yet. A list of tokens can be
generated with the—dump-tokensoption.

Note: this option is not always available. It requires theSPOregex API. If the POSIX regex API
is not available on your platform, or tHd nextgen binary was compiled without support for the
API, you will not be able to use this option.

By runningLLnextgen using the namé&Lgen, LLnextgen goes intoLLgen-mode. This is implemented
by turning off all default extra functionality likkLreissue and disallowing all extensions to thé.gen
language. When running &&gen, LLnextgen accepts the following options frotr_gen:

—a

Ignored.LLnextgen only generates ANSI C.

—hnum Ignored.LLnextgen leaves optimisation of jump tables entirely up to the C—cibenp

—j[num] Ignored.LLnextgen leaves optimisation of jump tables entirely up to the C—cibenp

—I[num] Ignored.LLnextgen leaves optimisation of jump tables entirely up to the C—cibenp

Increase the verbosity level. See the description oftheption above for details.
Suppress all warnings.

Ignored.LLnextgen will only generate token sets in LL.output. The extensiverereporting mech-
anisms inLLnextgen make this feature obsolete.

LLnextgen cannot create parsers with non-correcting error-recovérgrefore, using then or —soptions
will causelLLnextgen to print an error message and exit.

29

COMPATIBILITY WITH LLGEN

At this time the basid.Lgen functionality is implemented. This includes everythingggdrom the ex-
tended user error-handling with the %onerror directive thiiechon-correcting error-recovery.

Although I've tried to copy the behaviour &f.gen accurately, | have implemented some aspects slightly
differently. The following is a list of the differences in l@viour betweehlgen andLLnextgen:

e LLgen generated both K&R style C code and ANSI C cotlenextgen only supports generation
of ANSI C code.

e There is a minor difference in the determination of the diefehiices.LLnextgen simply chooses
the first production with the shortest possible terminabjoiction, whileLLgen also takes the com-
plexity in terms of non-terminals and terms into account.erfehis also a minor difference when
there is more than one shortest alternative and some of tremarked with %avoid. Both differ-
ences are not very important as the user can specify whiemaltive should be the default, thereby
circumventing the differences in the algorithms.

e The default behaviour of generating one output C file pertigmd Lpars.c and Lpars.h has been
changed in favour of generating one .c file and one .h file. &tiemale given for creating multiple
output files in the first place was that it would reduce the citatipn time for the generated parser.
As computation power has become much more abundant thigréeist no longer necessary, and
the difficult interaction with the make program makes it widable. The_Lgen behaviour is still
supported through a command-line switch.

e in LLgen one could have a parser and a %first macro with the same ridmextgen forbids this,
as it leads to name collisions in the new file naming schemetheooldLLgen file naming scheme
it could also easily lead to name collisions, although theyld be circumvented by not mentioning
the parser in any of the C code in the .g files.

e LLgen names the labels it generatesd,.where X is a numbel.Lnextgen names these LIX.

e LLgen parsers are always reentrant. As this feature is not usgdofem, LLnextgen parsers are
non-reentrant unless the optierreentrantis used.

Furthermorel_Lnextgen has many extended features, for easier development.

BUGS

If you think you have found a bug, please check that you areguiie latest version ofLnextgen
[http://os.ghalkes.nl/LLnextgen]. When reporting bugkgase include a minimal grammar that demon-
strates the problem.

AUTHOR

G.P. Halkeslinextgen@ghalkes.nl>

COPYRIGHT

Copyright(© 2005-2008 G.P. Halkes
LLnextgen is licensed under the GNU General Public Liceression 3.

30

For more details on the license, see the file COPYING in theid@ntation directory. On Un*x systems
this is usually /usr/share/doc/LLnextgen-0.5.5.

SEE ALSO

LLgen(1), bison(1), yacq1), lex(1), flex(1).

A detailed manual foL.Lnextgen is available as part of the distribution. It includes thetayrfor the
grammar files, details on how to use the generated parseuinpyograms, and details on the workings of
the generated parsers. This manual can be found in the dotatioa directory. On Un*x systems this is
usually /usr/share/doc/LLnextgen-0.5.5.

31

