
LLnextgen user manual
For version 0.5.5

G.P. Halkes<llnextgen@ghalkes.nl>

31-12-2011

Contents

Contents 1

1 Introduction 3
1.1 Extent of reimplementation 3

2 Specifying grammars 4
2.1 Basic syntax 4
2.2 Defining tokens 6
2.3 Conflicts 7

3 Interfaces 9
3.1 Name prefixes 9
3.2 Generated files 9
3.3 Lexical analyser 9
3.4 Parser routine 10

3.4.1 Multiple parsers in one grammar 11
3.5 Error handling 11

4 Other features 13
4.1 Version macro 13
4.2 Including files 13

4.2.1 Dependencies 13
4.3 Specifying options in the grammar 14
4.4 Return values 14
4.5 LLabort 14
4.6 Back-reference operator 14
4.7 Reentrant parsers 15
4.8 Thread-safe parsers 16

4.8.1 Parser routines 16
4.8.2 LLmessage and lexical analyser 17
4.8.3 LLabort .. 17

4.9 Symbol tables 17
4.9.1 Symbol tables and gettext 17

4.10 Automatic token declarations 17
4.11 %top C code 18

5 Examples 19
5.1 Calculator 19
5.2 Thread-safe parser 22

6 Contact 24
6.1 Reporting bugs 24
6.2 Let me know .. . 24

1

Bibliography 25

A Manual page 26

2

Chapter 1

Introduction

LLnextgen is a (partial) reimplementation of the LLgen ELL(1) [2] parser generator created by D. Grune
and C.J.H. Jacobs1 which is part of the Amsterdam Compiler Kit (ACK). As such, itcreates C source-code
for a text parsing engine from a description of the grammar. The parsers created use the LL(1) paradigm,
with several extensions to allow for some ambiguities to be resolved without rewriting the grammar.

This manual is not an introduction to parsers or parsing paradigms. There are many books on parsing
and compiler construction, for example [1].

Throughout this manual I have indicated where the behaviourof LLnextgen differs from LLgen with
the ~ symbol in the margin. The manual page also provides an overview of the differences in behaviour
of LLnextgen and LLgen. Furthermore, I have indicated several important issues, that are often overlooked
with a ! symbol in the margin.

1.1 Extent of reimplementation

LLnextgen implements the complete feature set of LLgen except for the extended user error-handling with
the%onerror directive and the non-correcting error-recovery. The standard error-recovery mechanism is
implemented.

The reason for not implementing the%onerror directive is because it is mostly a hook to allow
research into different error-recovery mechanisms. This is not very useful for regular LLnextgen users.

The non-correcting error-recovery is not implemented because it is a lot of work and I think it is not
an improvement over the default algorithm. Although it can produce fewer error messages, the location
of the reported error can diverge from the location where theparser got stuck. My personal experience is
that compilers that report errors at a different place then where the parser gets stuck can seriously hinder
interpretation of the generated error-message by the compiler user.

1To add to the confusion, there exists or existed another program called LLgen, which is an LL(1) parser generator. It was created
by Fischer and LeBlanc.

3

Chapter 2

Specifying grammars

2.1 Basic syntax

LLnextgen uses an EBNF-like syntax for specifying grammars. A grammar consists of rules, which in turn
consist of elements. The elements in an LLnextgen grammar are terminals (or tokens), non-terminals (or
rules), terms, actions and back-reference operators. The grammar file is also the place to specify several
directives as well as providing code to be copied to the output (enclosed in braces).

Terminals can be either a character literal, specified as’a’ , or an identifier. LLgen can handle the
following character escapes:’\b’ , ’\f’ , ’\n’ , ’\r’ , ’\t’ , ’\\’ ’\’’ and octal character
codes, for example’\033’ . LLnextgen can also handle’\a’ , ’\v’ , ’\?’ , ’\"’ and hex- ~
adecimal escape codes, for example’\x1B’ . These all have the same semantics as in C, except for
the hexadecimal escape codes. The hexadecimal escape codesonly allow you to specify character
literals up to 0xFF.

Non-terminals are specified by identifiers. Any non-terminal used in a rule,has to appear as a rule
itself elsewhere in the grammar. As non-terminals are translated into C-functions, they can have
arguments. The arguments can be passed in the normal way, that is, by writing a C-expression
enclosed in parentheses. LLnextgen also supports return values. See Section 4.4 for details. ~

Terms are one or more elements enclosed in[and] . A | can be used to specify an alternation (or choice)
between several alternatives.

Actions are pieces of C-code enclosed in braces. To determine the endof the C-code, LLnextgen tries to
match the braces in the code and find the brace matching the opening brace of the action. This means
that there is one restriction on the C-code: the number of opening braces must match the number of
closing braces. Normally, C-code will satisfy this constraint, but if you are using#define s which
contain braces LLnextgen’s efforts to find matching braces may be thwarted.

A further restriction is that comments should not contain line continuations (a backslash followed by
a newline) within the starting and ending delimiters (/ * , * / and//). As this is something human
programmers don’t usually do, this is not a big restriction.

Back-reference operatorsare used to avoid code duplication. By specifying... in a term, all the ~
elements preceding the term are included in its place. See Section 4.6 for more details.

Terminals, non-terminals and terms can all be followed by anoptional repetition specification. The
following list summarises the possible repetition specifiers:

• A number, specifying the exact number of times the element has to appear.

• A +, specifying the element has to appear 1 or more times.

4

• A * , specifying the element may appear 0 or more times.

• + or * followed by a number indicating the maximum number or times the element may appear.

• A ?, specifying the element may appear once. This is a shorthandfor * 1.

• The last item in a term followed by+ or * operator can be followed by..? to indicate that this item ~
is optional for the last repetition of the enclosing term. Each alternative of the term can contain an
item followed by..? . A good example of its use is in specifying ISO C99 and C++ enums, where
the last item in the enum can optionally be followed by a comma.

The LLnextgen grammar can be specified in the LLnextgen syntax. The example below is a simplified
extract from the actual grammar file used to build LLnextgen.Of course, in the actual grammar the rules
do have parameters and actions have been specified.

grammar : declaration * ;

declaration :
C_DECL /* Top level C-code * /

|
START IDENTIFIER ’,’ IDENTIFIER ’;’

|
/ * Other declarations omitted for brevity * /

|
rule ’;’

;

rule :
identifier
[/ * Return value type * /

’<’
IDENTIFIER
[

’ * ’
|

IDENTIFIER
] *
’>’

] ?
C_EXPR ? /* Parameters * /
C_DECL ? /* Local variable declarations * /
’:’
productions

;

productions :
simpleproduction [’|’ simpleproduction] *

;

simpleproduction :
[

DEFAULT
|

IF C_EXPR
|

/ * Other directives omitted for brevity * /
]
[

element
repeats

5

] *
;

element :
C_DECL /* Action code * /

|
LITERAL

|
IDENTIFIER / * Can be both a terminal or a non-terminal * /
[/ * Return value renaming * /

’<’
IDENTIFIER
’>’

] ?
C_EXPR ? /* Parameters * /

|
’[’
/ * Optional directives omitted for brevity * /
productions
’]’

|
BACKREF /* The ’...’ operator * /

;

repeats :
/ * No operator * /

|
[

’ * ’
|

’+’
]
NUMBER ?

|
NUMBER

|
DOTQMARK

;

Note the use of C-style comments. LLnextgen accepts both C-style comments and C++-style com- ~
ments anywhere in the grammar. All capitalised words are terminals, although this is simply a convention.
TheC DECLtoken represents a number of C declarations and statements,enclosed in braces. TheC EXPR
token represents either a parameter list, as inrule andelement , or an expression to be evaluated dur-
ing parsing to resolve a conflict (as insimpleproduction). In both cases, theC EXPRincludes the
enclosing parentheses.

The use of the rulerepeats in simpleproduction could have used the? operator to obviate the
need for an epsilon alternative inrepeats . However, the LLnextgen grammar includes an action in the
epsilon alternative (omitted in the example) which would not be executed if the? operator had been used.

2.2 Defining tokens

To use a token in the parser, it first has to be defined. To do this, one can use the%token directive,
although as an extension to LLgen, one can also use%label for this (see Section 4.9). Multiple tokens ~
can be declared by a single%token directive, for example:

%token IDENTIFIER, NUMBER, C EXPR;

For quick development in the early stages, one can also use the ––token–patternoption which automatically ~

6

defines all the unknown identifiers that match the given pattern as tokens (see Section 4.10).

2.3 Conflicts

In LL(1) grammars, two kinds of conflicts can occur: FIRST/FIRST conflicts and FIRST/FOLLOW con-
flicts. LLgen names these alternation conflicts and repetition conflicts respectively (although repetition
conflicts also cover cases that involve repetition operators). An alternation conflict occurs when two alter-
natives of a rule or a term can start with the same terminal. A repetition conflict can occur in two cases:
when a term or rule has an empty alternative, and can be followed by a token that is also the start of one
of the other alternatives, or when a repeating element with avariable repetition count (using+ or *) can be
followed by a token that is also the start of (an alternative of) the element.

One way to deal with conflicts is rewriting the grammar rules.For most cases this is the most practical
way. However, in some cases it is possible to write an expression that determines which way to solve the
conflict at run time. This is what the extended part of ELL(1) is about. Using the directive%if at the
start of an alternative with a conflict, followed by a C-expression in parentheses, an alternation conflict
can be resolved. For the common expressions (1) and (0), the directives%prefer and%avoid have
been defined. Using these instead of%if (1) and%if (0) will produce faster code. Note that these
directives cannot be used on the last conflicting alternative as there always has to be a fall-back alternative
for each conflicting token.

An example of an alternation conflict is the following grammar:

1: %start parser, starting_rule;
2: %token A;
3:
4: starting_rule :
5: A
6: |
7: rule
8: ;
9:

10: rule :
11: ’a’?
12: A
13: ;

If LLnextgen is run on the preceding grammar, with the ––verbose option, it will output the following:

<stdin>:6: error: Alternation conflict with alternative a t <stdin>:5 in
starting_rule
Trace for the conflicting tokens from alternative on line 5:

A [line 5]
Trace for the conflicting tokens from alternative on line 6:

rule [line 7] ->
A [line 12]

The trace of the first alternative is straightforward. It specifies that on line 5 the tokenA is part of
the first set of the alternative. The trace for the second alternative specifies that the conflicting token is in
rule which is called from line 7. LLnextgen then goes on to show where in rule the offending token is
mentioned, in this case on line 12.

For repetition conflicts one can use the%while directive at the start of a repeating term, again followed
by a C-expression in parentheses. If the expression evaluates to something other than zero, the repetition
will be continued. If the expression evaluates to zero, parsing will continue with the grammar following
the repetition1.

In the example below there is a repetition conflict on line 15.LLnextgen cannot decide whether to
match the optional’a’ at line 15, as the ruleinner may also be followed by a’a’ (through the call to
outer on line 4).

1Due to a bug in LLgen,%while alternatives could not be used in+ repetitions. LLnextgen on the other hand does allow these.

7

1: %start parser, outest;
2:
3: outest :
4: [outer] +
5: ’a’
6: ;
7:
8: outer :
9: ’c’

10: inner
11: ;
12:
13: inner :
14: ’b’
15: ’a’?
16: ;

If LLnextgen is run on the preceding grammar, with the ––verbose option, it will output the following:

<stdin>:15: error: Repetition conflict in inner
Trace for the conflicting tokens from the first set:

’a’ [line 15]
Trace for the conflicting tokens from the follow set:

<- inner from outer [line 10]
<- outer from outest [line 4]

’a’ [line 5]

In the trace, the left arrows (<-) indicate that the follow set of the rule being traced (the first rule
mentioned) is at least partly determined by a call to that rule at the specified location. In this case, the
follow set of the ruleinner is determined by a call in ruleouter on line 10. As this is the last part of
outer , the follow set ofinner is further determined by the location whereouter is called. The next
line of the trace therefore specifies that there are tokens ininner ’s follow set which come from the call
to outer on line 4. This call toouter can be followed by the’a’ on line 5, which is the source of the
conflict.

An example of using a%while directive to solve this conflict would be the following: if, for example,
the ’a’ on line 15 must only be matched the first 10 times, one could change the ruleinner into:

inner { static int count = 0; } :
’b’
[

%while (++count <= 10)
’a’

] ?
;

Note however, that using thestatic variable this way means that you can only call the parser once.
Using a global variable which is reset at some point will allow for calling the parser multiple times.

To aid expression-writing, the%first directive can be used to declare macro’s that evaluate to one
if a rule can start with a given token. For example, declaring%first fset, rule; declares a macro
namedfset that takes a single argument, the number of a token. If that token can start the rulerule ,
fset evaluates to one.

8

Chapter 3

Interfaces

This chapter details the interfaces expected and provided by the parsers generated by LLnextgen.

3.1 Name prefixes

All symbols (functions and variables) generated by LLnextgen are by default prefixed with LL. To facilitate
multiple parsers in one program, LLnextgen can be instructed to use a different prefix for all symbols with
external linkage. This is accomplished using#define s, so that within the output C file the symbols can
still be used with theirLL prefix. To instruct LLnextgen to use a different prefix, use a%prefix directive
like for example%prefix PF; .

NOTE: it is inadvisable to create symbols using the LL prefix, or any prefix specified with%prefix .
Doing so can cause name-clashes at both compile and link time.

3.2 Generated files

LLnextgen generates two files by default: a .c file and a .h file.The base name of the files is the ~
name of the first input file with an optional trailing .g extension removed, or the name specified by the
––base–name option. The default extensions can be overriden by using the ––extensions option. This
is different from LLgen, which generates three files by default: a .c file for each input file, a file named
Lpars.c and a file named Lpars.h. If a%prefix directive has been specified in the grammar, the latter two
files would have the prefix in place of the capital L. The LLgen behaviour can be obtained by specifying
the ––llgen–output–style option.

The header file contains#define d constants for all the tokens defined through%token and%label
directives, as well as for the symbolsEOFILE, LL MAXTOKNO, LL MISSINGEOFandLL DELETE. ~
The token#define s are enclosed in a conditional compilation block. If the symbol LL NOTOKENSis
#defined , the tokens will not be available.

NOTE: the guard symbol is always namedLL NOTOKENSregardless of any%prefix directives
and the symbolsLL MAXTOKNO, LL MISSINGEOFandLL DELETEare excluded from the conditional
compilation.

Finally, the header file also contains prototypes for the parser itself, and if applicable also for ~
LLreissue (see Section 3.3) andLLabort (see Section 4.5).

3.3 Lexical analyser

LLnextgen needs to be provided with a lexical-analyser routine. The lexical analyser is expected to return
anint ; the token number. The token numbers 1 through 255 have been reserved for character literals. This
includes the standard ASCII character set. The tokens defined through%token and%label directives
also have constants#defined for them in the generate header file. Token number 0 is normally reserved

9

for signalling the End-Of-File condition, but using the option ––no–eof–zero, this token can be used for ~
the nul character. However, you need to ensure that your lexical analyser returns a proper End-Of-File
marker. Therefore, the token number−1 is also reserved for signalling the End-Of-File condition,as is the
#define ’d constantEOFILE in the generated header file. For flex based lexical analysers, you also have
to manually specify that you want to return either of these values instead of 0 to signal the End-Of-File
condition. For example by including the pattern:

<* ><<EOF>> { return EOFILE; }

in your lexical analyser.
It is also possible to use the EOFILE token in your grammar. However, not all lexical analysers can be

called again without resetting, after having returned an End-Of-File condition. In particular, flex scanners
are explicitly specified to give undefined results in this case. Therefore LLnextgen will generate a warning
if you do use EOFILE in your parser. This warning can be disabled with ––suppress-warnings=eofile,
but you must make sure that your lexical analyser will be reset, or will keep returning the End-Of-File
condition on repeated calls.

Another short warning is in order at this time: when returning a single character as a token, make sure
you return a value greater than zero. By default characters are signed in C, so simply returning achar
variable in the lexical analyser can cause problems. For a (f)lex based lexical analyser the best way to
return a single character is:return * (unsigned char *) yytext; .

The name of the lexical-analyser routine defaults to yylex,to facilitate easy integration with (f)lex
generated analysers. To specify a different name for this routine, supply a%lexical directive in your
grammar. For example,%lexical scanner; would indicate that the analyser to be used is named
scanner .

LLnextgen requires lexical analysers to return the same token returned previously after it inserts a token !

during error recovery. Most lexical analysers do not support this kind of unput action, so a wrapper has to
be written for the lexical analysers. As this usually leads to the same code for each parser, LLnextgen can~
generate a default wrapper by specifying the ––generate–lexer–wrapper. This default wrapper can also be
dumped on standard output by using ––dump–lexer–wrapper. From version 0.5.1, LLnextgen will issue
a warning if the ––generate–lexer–wrapper option is not specified. If you do not want the automatically
generated wrapper, specify ––generate–lexer–wrapper=noin your options.

To help write wrappers for lexical analysers the variableLLreissue is set to the token that needs to
be reissued, orLL NEWTOKENif no reissue is requested (unless the option ––no–llreissue is specified).
The lexer wrapper is expected to resetLLreissue to LL NEWTOKENafter reissuing the previous token.

NOTE: versions of LLnextgen before 0.3.0 use a different and incompatible convention for the value of
LLreissue . To distinguish between these versions, use the C macroLL VERSION(see Section 4.1). In-
compatible older versions of LLnextgen do not define this macro. However, if you use ––generate-lexer-wrapper
this difference does not concern you as it is hidden by the generated code.

The result of the last call to the lexical analyser is stored inLLsymb . The value ofLLsymb is only valid
in %while and%if directivesprecedinga token matching, and in actionsfollowinga token matching. In
the arguments of rules named after the token matching,LLsymb contains a different value.LLsymb can
also be used inLLmessage to determine the identity of the token skipped, or the token in front of which
a different token will be inserted (see Section 3.5).

3.4 Parser routine

The generated parser must be given a name and a starting rule with the %start directive. The syntax
is %start parser name, starting rule; . The generated parser will then have the following
prototype:

void parser name(void);

However, there are three cases where the prototype changes:when the option ––abort is used, the re-
turn type changes toint (see Section 4.5). When the option ––thread–safe is used theparser will take
an argument (see Section 4.8). Finally, when thestarting rule has a return value, the parser will also

10

take an argument (see Section 4.4). The prototype will be added to the header file, unless the option
––no–prototypes–header is used.

3.4.1 Multiple parsers in one grammar

It is possible to specify multiple parser in the same grammarfile. This can be useful if the parsers have
many common rules, or share a single lexical analyser. Theseparsers will share common data structures.
If the parsers are not called from one another this causes no problem. For the case where the parser do
call one another, either the option ––reentrant or the option ––thread-safe needs to be specified (See also
Section 4.7 and Section 4.8). LLnextgen will issue a warningif you don’t specify one of these option but do
use multiple parsers in one grammar. To suppress this warning use ––suppress-warnings=multiple-parser.

3.5 Error handling

When the generated parser encounters an error in the input, it tries to find a sequence of token deletions
and insertions such that the token encountered can be used aspart of the grammar. To decide which tokens
to discard, the parser keeps track of the set of tokens which will always be matched by continuing after
the error correction. To determine this set, LLnextgen usesso called default choices for each alternation.
A default choice is the alternative that is chosen when trying to recover from an error. By default, it ~
is the first alternative that needs the minimum number of tokens to complete. This is a slight deviation
from the LLgen way of choosing a default choice, as LLgen alsotakes the complexity of the alternatives
into account. There is also a difference in the handling of the %avoid directive. LLnextgen deems all
alternatives marked with%avoid equal and simply chooses the first (if they are the shortest alternatives
that is), while LLgen chooses the last.

These differences are not very large, and can be circumvented by specifying a%default directive on
the alternative of choice. It should be noted that the%default directive is also an effective means of error
recovery in the actions. It is usually easiest to write an action without regard to the validity of the token
text, especially when the token text is expected to be something other than a keyword or operator. To direct
the parser to use a different action to handle these situations, one might use the following construction:

[
IDENTIFIER { / * add to symbol table * / }

|
NUMBER { /* extract value from text * / }

|
%default MISSING_EXPRESSION / * No action * /

]

For terms with a variable repetition count (i.e. terms followed by+, * or ?), the default is to assume a
minimal number of repetitions. If however it is desirable tomake the parser to go into the repetition if one
of the tokens of the default choice within the repetition appears, a%persistent directive can be added
at the start of the term.

The parser calls the routine LLmessage, which has to be provided by the parser writer, to indicate either
a deletion or an insertion of a token. LLmessage takes oneint parameter, which can have the one of the
following values:

LL DELETE to indicate that the parser is about to discard the token withtoken numberLLsymb .

LL MISSINGEOF to indicate that the parser expected the end of input, and is about to discard the token
with token numberLLsymb .

Any other value to indicate the parser is about to insert a token with that number before the token with
token numberLLsymb .

Note that LLgen uses the fixed values 0 forLL DELETE and −1 for LL MISSINGEOF. Because ~
LLnextgen uses 0 as a regular token number when the option ––no–eof–zero is used, the value 0 would

11

have two meanings. Therefore the use of the hard coded values0 and−1 is deprecated, and all new parsers
should useLL DELETEandLL MISSINGEOFinstead.

To make development quicker, a default LLmessage routine can be generated using the option ~
––generate–llmessage. This routine can also be dumped to standard output by specifying the option
––dump–llmessage on the command line. The default version can then be used as a starting point for
a more elaborate message printing routine.

12

Chapter 4

Other features

This chapter describes several features LLnextgen provides over the standard LLgen feature set. These ~
have been created to make development easier.

4.1 Version macro

To distinguish different interface versions, LLnextgen defines the C macroLL VERSIONwhich is affected
by %prefix . It has been defined since version 0.3.0. The value of the macro is the version number
encoded as a hexadecimal number, with two digits per versionnumber position. The number for version
0.3.0 is therefore 0x000300. Currently, the only interfacefor which distinguishing versions is necessary is
theLLreissue variable (see Section 3.3).

4.2 Including files

LLnextgen has a file inclusion mechanism, similar to the#include mechanism in C. To include another
grammar file use:%include " filename"; . The filename may include C-style escaped characters.
LLnextgen tries to prevent you from including files recursively, and will abort with an error if it detects
this.

4.2.1 Dependencies

The include mechanism also introduces a dependency situation. This requires proper handling in Makefiles.
To help developers, LLnextgen can provide dependency information for its input files. Using the option
––depend will print a line with the names of the files that willbe created, followed by a semicolon, followed
by all the input files that will be used to create the output files. Several modifiers exist to change the output
(see Appendix A).

A problem that already existed with LLgen is that to find out which header files the generated code
needs, one needs to generate the code. However, for dependency generation it is undesirable to already
generate the parser code. Therefore LLnextgen adds an option to simply dump all the top-level C-code
(––depend–cpp). Piping this through the C preprocessor allows dependency generation to proceed without
generating the actual parser. For example:

LLnextgen --depend-cpp grammar.g | gcc -E -MM -MP -MG -MT ’gr ammar.o’ -

can be used to generate dependency information forgrammar.o , using gcc. This does of course require
that the input is syntactically correct.

13

4.3 Specifying options in the grammar

As options for LLnextgen can be specific to a grammar, it is logical to allow grammar writers to specify the
options in the grammar as well. This can be done with a%options directive. The%options directive
must be followed by a double quoted string with options. Onlylong options can be specified and the
leading dashes must be omitted. The string is processed for C-style escaped characters.

4.4 Return values

From LLnextgen version 0.4.0, rules can have return values.To use return values, a rule needs to have a
return type. This can be specified by naming the desired type between ’<’ and ’>’ after the name of the
rule. The name of the type can consist only of identifiers and ’* ’ operators. To use a type that contains
other characters (for example the ’<’ character for C++ templates) you need to use atypedef .

The return value of a rule is the last value assigned to the generated local variableLLretval . LLretval
will by default be filled with 0 bytes, unless the option ––no–init–llretval is used.

For each rule that is called, a local variable is created thatwill contain the value returned by that rule.
This variable can be freely used in your C code. By default, that variable will have the name of the rule
that returned the value. However, by using an identifier enclosed in ’<’ and ’>’ the variable can be given a
name of your choice. Two rules can also use the same variable to return their value, if they have the same
return type. The calculator example in Section 5.1 uses return values.

If the starting rule for a parser has a return value, the prototype for the parser is changed. The parser
will take a single argument, which is a pointer to a variable where the return value of the rule should be
stored. It’s type is therefore a pointer to the type named as the return type of the rule. For thread safe
parsers, the return value argument is the second argument.

LLnextgen will also try to warn you if a rule returns a value, but the returned value is ignored. However,
because LLnextgen does not look inside code segments, it assumes that a value returned before a code
segment is used in the subsequent code. The same holds for arguments passed to a subsequent rule. If
you do not intend to use the value returned from the rule, you can rename its return value toLLdiscard .
LLnextgen will not warn about return values assigned toLLdiscard , and will not create a local variable
to hold the returned value.

4.5 LLabort

It is not always desirable to continue parsing after an error. To accommodate this, LLnextgen can be
instructed to generate a routine called LLabort. This routine has to be passed one integer with a value other
than 0. As mentioned in Section 3.4, this option changes the prototype of the parser routine such that it
returns anint . The value returned is 0 if the parser completed normally, and the value passed to LLabort
otherwise.

4.6 Back-reference operator

The back-reference operator (...) can be used in a term to prevent code duplication. All the elements
preceding the term are copied in its place. Note that this also means you cannot use labels (for use with
goto) in referenced actions, and static variables will be duplicated.

This construct is most usefull in the situations like comma-separated parameter lists, which are usually
specified as follows:

parameterList :
type
IDENTIFIER
{ / * code * / }
[

’,’
type

14

IDENTIFIER
{ / * code * / }

] *
;

where type is a non-terminal and IDENTIFIER a terminal. Withthe back-reference operator this can be
specified in the following, shorter, way:

parameterList :
type
IDENTIFIER
{ / * code * / }
[

’,’
...

] *
;

Note that only the elements in the enclosing term are copied.For example, in:

rule :
’a’
[

’b’
[

’,’
...

] *
]

;

only the literal’b’ is copied, and not the literal’a’ because it is outside the enclosing term.

4.7 Reentrant parsers

The parsers generated are not reentrant by default, contrary to LLgen parsers. To make the parsers reen- ~
trant (NOTE: not thread-safe!), use the ––reentrant option. This makesit possible for the parser to call
itself. This is different from running two parsers simultaneously in different threads. See Section 4.8 for
information on thread-safe parsers.

Calling the parser will change the state of the lexical analyser, which the currently running parser relies
on. It is therefore important to use a reentrant lexical analyser as well, when using reentrant parsers. Flex
provides these from versions after 2.5.4a (using%option reentrant or ––reentrant). Older versions
of flex do provide a way to switch between buffers, but this method fails to save the contents ofyytext
and is therefore unsuitable for most cases. It is possible tosave yytext yourself and thereby still use the
buffer switching mechanism flex provides.

Reentrant parsers are a way to implement file inclusion when specific tokens are expected after the
include command. For example, in LLnextgen a semicolon (;) is expected after the string containing the
file name. It is of course also possible to incorporate the recognition of include statements completely in
the lexical analyser. However, that would cause a substantial amount of work if for example comments are
to be allowed between the tokens as well. Below is the (simplified) code from the LLnextgen grammar:

INCLUDE
[

STRING
{ token = newToken(); }

|
%default
MISSING_STRING / * token is NULL by default * /

15

]
’;’
{

if (token != NULL) {
if (openInclude(token))

parser();
freeToken(token);

}
}

When the end of an include file is reached, the lexical analyser needs to return the end-of-file token and
switch back to the previous file. However, returning the end-of-file token may cause error messages from
the parser. To provide proper indication of where (what linein which file) the error is, the line number and
file name information should not be reset until the next tokenis to be retrieved from the lexical analyser.
When using flex this can be achieved in the following way:

int switchBack = 0;

int yywrap(void) {
...
switchBack = 1;
...

}

int lexerWrapper(void) {
if (LLreissue == LL_NEW_TOKEN) {

if (switchBack) {
/ * switch back to previous lexer state * /

}
...

} else {
...

}
}

As you can see, this requires a hand crafted lexer wrapper.

4.8 Thread-safe parsers

LLnextgen can also generate thread-safe parsers. This is required when multiple instances of the same
parser are to run in parallel. To make LLnextgen generate a thread-safe parser, the option ––thread–safe
needs to be specified. This will define the macroLL THREADSAFE (which is affected by%prefix)
and change the interface to several functions. The sectionsbelow detail the changes to the interface with
respect to the standard interface. For an example, see Chapter 5.

4.8.1 Parser routines

Parser routines for thread-safe parsers take an argument. This argument is meant for passing data to and
from the parser. The argument passed is available to all functions generated as part of the parser through
the macroLLdata . By default this argument is of typevoid * . To change the type of the argument, the
%datatype directive can be used. Its syntax is as follows:

%datatype "type" [, "header file"];

The first argument is the type of the argument to the parser. Ifthe type is not a standard C type, inclusion of
a header file with the type declaration is required. The required header file can be specified with the second
argument. By default the header file is assumed to be a local header file. However, if the string is enclosed
in ’<’ and ’>’, the header is assumed to be a system header file. If%datatype is used in a non-thread-safe
parser, LLnextgen will issue a warning which can be suppressed with ––suppress–warnings=datatype.

16

4.8.2 LLmessage and lexical analyser

TheLLmessage function, as well the lexical analyser both have an extra argument namedLLthis . It
contains the parser state and is of typestruct LLthis * . It also contains a member namedLLdata
which contains the user data. The macroLLdata expands toLLthis->LLdata to ease access. It is
intended that the user data contained in this member also contains the state for the lexical analyser. Note
that the name of the type and the name of the macro are changed by a%prefix directive, but the name of
the argument is not.

For LLmessage, the new signature is:

void LLmessage(struct LLthis * LLthis, int token);

4.8.3 LLabort

If the LLabort function is enabled with the ––abort option, its signature is changed into:

void LLabort(struct LLthis * LLthis, int retval);

4.9 Symbol tables

When printing error messages, it is often desirable to have astring associated with a token number. To
accommodate this, LLnextgen can create a symbol table (using the option ––generate–symbol–table).

By default all tokens that have been created with%token have as associated string the token name
itself. For example, if%token IDENTIFIER; appears somewhere in the grammar, the string associated
with the token number for IDENTIFIER would be ”IDENTIFIER”.The default for the character literals
is the table defined in the LLnextgen source code. For the characters up to and including space and for
character 127, it is the name of the control character enclosed in<>. For characters between space (32) and
127 it is the character itself enclosed in single quotes (’), and for all other characters it is the hexadecimal
C-style escape code enclosed in single quotes.

All these defaults can be overridden by the%label directive. Its syntax is:

%label token, string;

token can be both a character literal or an token identifier. Stringis output unprocessed to the output file.
A token identifier does not have to be declared by a%token directive, unless the option
––no–allow–label–create has been specified.

To use the symbol table, use the functionLLgetSymbol . It takes a token number as only argument,
and returns a pointer to a string constant, or NULL if the token number is invalid.

4.9.1 Symbol tables and gettext

For internationalised programs, the strings returned byLLgetSymbol may need to be translated.
LLnextgen provides the ––gettext option, which will ensurethat all symbol names specified by a%label
directive are enclosed in a macro call. The macro will expandto the string itself. This way, one can use
xgettext to extract the strings to be translated. The default macro name isN , because that is what most
people use. A guard will be included such that compilation without gettext is possible by not defining the
guard. The guard is set to USENLS by default. Translations will be done automatically in LLgetSymbol
in the generated parser through a call to gettext. The ––gettext option takes optional names for the macro
and guard, separated by a comma, as arguments.

4.10 Automatic token declarations

Note: the following options are not always available. It requires the POSIX regex API. If the POSIX regex
API is not available on your platform, or the LLnextgen binary was compiled without support for the API,
you will not be able to use this option.

17

In the early stages of development it can be a nuisance to haveto define all the tokens used in the
grammar, simply to test for conflicts. To mitigate this problem LLnextgen provides the ––token–pattern
option. The argument to the ––token–pattern option is a regular expression that is used to test if an unknown
identifier is meant to be a token, or maybe is a misspelled rulename.

When the grammar has stabilised, the ––dump–tokens can be used to generate a list of token decla-
rations for the identified tokens. The default is to output a single %token directive which includes all
token definitions. The ––dump–tokens takes a single optional argument which modifies the way the dec-
larations are printed. Theseparatemodifier makes LLnextgen output a separate%token directive for
each identifier, while thelabelsmodifier makes LLnextgen output a%label directive for each identifier.
The text for the label is the name of the identifier. If thelabelsmodifier is used in combination with the
––lowercase–symbols option, the text for the label will contain only lowercase characters.

For example, given the following grammar:

rule:
TOKEN
IDENTIFIER

;

using the options ––token–pattern=ˆ [A-Z]+$ and ––dump–tokens will result in the output:

%token TOKEN, IDENTIFIER;

If instead ––token–pattern=ˆ [A-Z]+$ ––dump–tokens=labels ––lowercase–symbols is used, the output
will be:

%label TOKEN, "token";
%label IDENTIFIER, "identifier";

Without ––dump-tokens the grammar will be accepted as if theabove declarations were included in the
grammar.

4.11 %top C code

Sometimes it is necessary to include some definitions beforeany other code in the generated parser file. To
facilitate this, a single section of C code may be marked as top code, by prefixing it with %top.

18

Chapter 5

Examples

This chapter contains two examples. The first is a very simplecalculator, which shows basic LLnextgen
use and a sophisticated use of%while . The second is an example of the thread-safe parser interface.

Warning : when copying the text below, make sure that you remove any page numbers and take care
to ensure all characters in your text file are ASCII characters and not UTF-8 or other characters. Another
option is to use the example files from the documentation directory.

5.1 Calculator

The file below shows a very simple calculator. It uses only integer numbers, and can add (+), subtract (-),
divide (/), multiply (*), take the modulo (&), and calculate powers (ˆ).

%start calculator, input;
%label NUM, "number";
%options "generate-lexer-wrapper generate-llmessage ge nerate-symbol-table";
%lexical lexer;

{
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <math.h>

static int value;

enum states {
START,
NUMBER

};

int lexer(void) {
enum states state = START;
int c;

value = 0;
while ((c = getchar()) != EOF) {

switch (state) {
case START:

if (isspace(c) && c != ’\n’) {
/ * Skip white space, except for newlines. * /
continue;

} else if (isdigit(c)) {

19

/ * Digits mean a number! * /
state = NUMBER;
value = c - ’0’;
break;

}
/ * Simply return all other characters and let the

parser error handling sort it out if necessary. * /
return c;

case NUMBER:
/ * Read all digits and push back the non-digit, so

we can reread that the next time. * /
if (!isdigit(c)) {

ungetc(c, stdin);
return NUM;

}
value = value * 10 + (c - ’0’);
break;

}
}
/ * We’re done. * /
return EOFILE;

}

/ * Simple main routine to fire up the calculator. * /
int main(int argc, char * argv[]) {

printf("LLnextgen integer-calculator example. Press ˆC o r ˆD to end.\n");
calculator();
return 0;

}

/ * Define the operator priorities. A table would have been poss ible
as well, but this is just as clear and requires less memory. * /

int getPriority(int operator) {
switch(operator) {

case ’-’:
case ’+’:

return 0;
case ’/’:
case ’%’:

return 1;
case ’ * ’:

return 2;
case ’ˆ’:

return 3;
}
/ * This should never happen. * /
abort();

}

}

input :
’\n’ * / * Empty lines should be skipped. * /
[

expression(0)
{

printf("Answer: %d\n", expression);
}

20

’\n’ + / * Empty lines should be skipped. * /
] *

;

expression<int>(int priority) :
/ * Expressions are factors (numbers, negated expressions and

expressions between parentheses) followed by operators,
followed by expressions with higher priority. * /

factor<LLretval>
/ * By renaming the return value of expression to LLretval, we

immediately set the return value of this rule. * /
[

%while (getPriority(LLsymb) >= priority)
/ * The %while directive says to keep accumulating operators

as long as they have equal or higher priority. * /

’-’
expression<intermediate>(getPriority(’-’) + 1)
/ * The getPriority() + 1 means that ’-’ is left associative.

If it needs to be right associative, this needs to be
getPriority().
Also note the explicit use of ’-’ instead of LLsymb. This
is necessary as LLsymb has changed after matching ’-’. * /

{
LLretval -= intermediate;

}
|

’+’
expression<intermediate>(getPriority(’+’) + 1)
{

LLretval += intermediate;
}

|
’ * ’
expression<intermediate>(getPriority(’ * ’) + 1)
{

LLretval * = intermediate;
}

|
’/’
expression<intermediate>(getPriority(’/’) + 1)
{

LLretval /= intermediate;
}

|
’%’
expression<intermediate>(getPriority(’%’) + 1)
{

LLretval %= intermediate;
}

|
’ˆ’
expression<intermediate>(getPriority(’ˆ’) + 1)
{

LLretval = (int) pow(LLretval, intermediate);
}

] * / * Note: an expression can also be just a number or parenthesise d

21

expression, so there can also be 0 operators. Hence the * . * /
;

factor<int> :
’(’
expression<LLretval>(0)
’)’

|
’-’ expression(1)
{

LLretval = - expression;
}

|
NUM
{

LLretval = value; / * value is set by the lexical analyser. * /
}

;

The main thing to note is the use of%while to achieve operator precedence. Each time an operator is
matched,expression is called recursively to match a part of the input containingonly operators with
greater precedence. Afterexpression is done with matching the subexpression, more operators are
matched at the current level or higher. This can be used in compilers as well.

5.2 Thread-safe parser

The parser below does not do anything particularly useful. It is simply meant to show the interface for
thread-safe parsers. The parser uses the following header file:

#ifndef DATA_H
#define DATA_H

struct data {
char * string;
int index, dontStop;

};

#endif

And this is the parser:

%options "thread-safe abort generate-lexer-wrapper gene rate-symbol-table";
%datatype "struct data * ", "data.h";
%start parser, rule;
%lexical lexer;

rule :
’a’+

;

{
#include <stdio.h>
#include <stdlib.h>

int lexer(struct LLthis * LLthis) {
return LLdata->string[LLdata->index++];

}

22

void LLmessage(struct LLthis * LLthis, int LLtoken) {
switch (LLtoken) {

case LL_MISSINGEOF:
fprintf(stderr, "Expected %s, found %s.\n",

LLgetSymbol(EOFILE), LLgetSymbol(LLsymb));
break;

case LL_DELETE:
fprintf(stderr, "Unexpected %s.\n",

LLgetSymbol(LLsymb));
break;

default:
fprintf(stderr, "Expected %s, found %s.\n",

LLgetSymbol(LLtoken), LLgetSymbol(LLsymb));
break;

}

if (!LLdata->dontStop)
LLabort(LLthis, 1);

}

int main(int argc, char * argv[]) {
struct data data;
int i;

for (i = 1; i < argc; i++) {
data.string = argv[i];
data.index = 0;
/ * Don’t stop for odd numbered arguments. * /
data.dontStop = i & 1;
if (parser(&data) == 1) {

printf("Failed at argument %i\n", i);
exit(EXIT_FAILURE);

}
}
exit(EXIT_SUCCESS);

}

}

23

Chapter 6

Contact

6.1 Reporting bugs

If you think you have found a bug, please check that you are using the latest version ofLLnextgen
[http://os.ghalkes.nl/LLnextgen]. When reporting bugs, please include a minimal grammar
that demonstrates the problem. Bug reports can be sent to<llnextgen@ghalkes.nl> .

6.2 Let me know

If you have suggestions for improving LLnextgen, write me ane-mail at<llnextgen@ghalkes.nl> .
If you use LLnextgen in one of your programs, please let me know. Send me an e-mail at the afore-

mentioned address, preferably with a link to your project and whether you would like to be mentioned on
the LLnextgen webpage.

24

Bibliography

[1] Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs, and Koen G. Langendoen.Modern Compiler Design.
John Wiley & Sons, Ltd., 2000.

[2] Ceriel J. H. Jacobs. Some topics in parser generation. Technical Report IR-105, Department of
Computer Science, Vrije Universiteit, Amsterdam, 1995.http://www.cs.vu.nl/ ˜ ceriel/
LLgen.html .

25

Appendix A

Manual page

NAME

LLnextgen – an Extended-LL(1) parser generator

SYNOPSIS

LLnextgen [OPTIONS] [FILES]

DESCRIPTION

LLnextgen is a (partial) reimplementation of theLLgen ELL(1) parser generator created by D. Grune and
C.J.H. Jacobs (note: this is not the same as theLLgen parser generator by Fischer and LeBlanc). It takes
an EBNF-like description of the grammar as input(s), and produces a parser in C.

Input files are expected to end in .g. The output files will have.g removed and .c and .h added. If the input
file does not end in .g, the extensions .c and .h will simply be added to the name of the input file. Output
files can also be given a different base name using the option ––base–name (see below).

OPTIONS

LLnextgen accepts the following options:

–c, ––max–compatibility Set options required for maximum source-level compatibility. This is different
from running asLLgen, as all extensions are still allowed. LLreissue and the prototypes in the
header file are still generated. This option turns on the––llgen–arg–style, ––llgen–escapes–only
and––llgen–output–styleoptions.

–e, ––warnings–as–errorsTreat warnings as errors.

–Enum, ––error–limit= num Set the maximum number of errors, beforeLLnextgen aborts. Ifnumis set
0, the error limit is set to infinity. This is to override the error limit option specified in the grammar
file.

–h[which], ––help[=which] Print out a help message, describing the options. The optional which argu-
ment allows selection of which options to print.whichcan be set to all, depend, error, and extra.

26

–V, ––version Print the program version and copyright information, and exit.

–v[level], ––verbose[=level] Increase (without explicit level) or set (with explicit level) the verbosity level.
LLnextgen uses this option differently thanLLgen. At level 1,LLnextgen will output traces of the
conflicts to standard error. At level 2,LLnextgen will also write a file named LL.output with the
rules containing conflicts. At level 3,LLnextgen will include the entire grammar in LL.output.
LLgen will write the LL.output file from level 1, but cannot generate conflict traces. It also has an
intermediate setting betweenLLnextgen levels 2 and 3.

–w[warnings], ––suppress–warnings[=warnings] Suppress all or selected warnings. Available warnings
are: arg-separator, option-override, unbalanced-c, multiple-parser, eofile, unused[:<identifier>],
datatype and unused-retval. The unused warning can suppress all warnings about unused tokens
and non-terminals, or can be used to suppress warnings aboutspecific tokens or non-terminals by
adding a colon and a name. For example, to suppress warning messages about FOO not being used,
use–wunused:FOO. Several comma separated warnings can be specified with one option on the
command line.

––abort Generate the LLabort function.

––base–name=name Set the base name for the output files. NormallyLLnextgen uses the name of the
first input file without any trailing .g as the base name. This option can be used to override the
default. The files created will bename.c andname.h. This option cannot be used in combination
with ––llgen–output–style.

––depend[=modifiers] Generate dependency information to be used by themake(1) program. The mod-
ifiers can be used to change the make targets (targets:<targets>, and extra-targets:<targets>) and
the output (file:<file>). The default are to use the output names as they would be created by running
with the same arguments as targets, and to output to standardoutput. Using the targets modifier, the
list of targets can be specified manually. The extra-targetsmodifier allows targets to be added to the
default list of targets. Finally, the phony modifier will addphony targets for all dependencies to avoid
make(1) problems when removing or renaming dependencies. This is like thegcc(1) -MP option.

––depend-cppDump all top-level C-code to standard out. This can be used togenerate dependency
information for the generated files by piping the output fromLLnextgen through the C preprocessor
with the appropriate options.

––dump–lexer–wrapper Write the lexer wrapper function to standard output, and exit.

––dump–llmessageWrite the default LLmessage function to standard output, and exit.

––dump–tokens[=modifier] Dump %token directives for unknown identifiers that match the ––token–
pattern pattern. The default is to generate a single %token directive with all the unknown identifiers
separated by comma’s. This default can be overridden bymodifier. The modifierseparateproduces
a separate %token directive for each identifier, whilelabel produces a %label directive. The text
of the label will be the name of the identifier. If thelabel modifier and the––lowercase–symbols
option are both specified the label will contain only lowercase characters.
Note: this option is not always available. It requires the POSIX regex API. If the POSIX regex API
is not available on your platform, or theLLnextgen binary was compiled without support for the
API, you will not be able to use this option.

––extensions=list Specify the extensions to be used for the generated files. Thelist must be comma
separated, and should not contain the . before the extension. The first item in the list is the C source
file and the second item is the header file. You can omit the extension for the C source file and only
specify the extension for the header file.

––generate–lexer–wrapper[=yes—no] Indicate whether to generate a wrapper for the lexical analyser.
As LLnextgen requires a lexical analyser to return the last token returned after detecting an error
which requires inserting a token to repair, most lexical analysers require a wrapper to accommodate

27

LLnextgen. As it is identical for almost each grammar,LLnextgen can provide one. Use––dump–
lexer–wrapper to see the code. If you do specifiy this optionLLnextgen will generate a warning,
to help remind you that a wrapper is required.
If you do not want the automatically generate wrapper you should specifiy this option followed by
=no.

––generate–llmessageGenerate anLLmessagefunction.LLnextgen requires programs to provide a func-
tion for informing the user about errors in the input. When developing a parser, it is often desirable
to have a defaultLLmessage. The providedLLmessageis very simple and should be replaced by a
more elaborate one, once the parser is beyond the first testing phase. Use––dump–llmessageto see
the code. This option automatically turns on––generate–symbol–table.

––generate–symbol–tableGenerate a symbol table. The symbol table will contain strings for all tokens
and character literals. By default, the symbol table contains the token name as specified in the
grammar. To change the string, for both tokens and characterliterals, use the %label directive.

––gettext[=macro,guard] Add gettext support. A macro call is added around symbol table entries gen-
erated from %label directives. The macro will expand to the string itself. This is meant to allow
xgettext(1) to extract the strings. The default is N, because that is what most people use. A guard
will be included such that compilation without gettext is possible by not defining the guard. The
guard is set to USENLS by default. Translations will be done automatically in LLgetSymbol in the
generated parser through a call to gettext.

––keep–dir Do not remove directory component of the input file-name whencreating the output file-name.
By default, outputs are created in the current directory. This option will generate the output in the
directory of the input.

––llgen–arg–styleUse semicolons as argument separators in rule headers.LLnextgen uses comma’s by
default, as this is what ANSI C does.

––llgen–escapes–onlyOnly allow the escape sequences defined byLLgen in character literals. By default
LLnextgen also allows\a,\v, \?,\”, and hexadecimal constants with\x.

––llgen–output–styleGenerate one .c output per input, and the files Lpars.c and Lpars.h, instead of one
.c and one .h file based on the name of the first input.

––lowercase–symbolsConvert the token names used for generating the symbol tableto lower case. This
only applies to tokens for which no %label directive has beenspecified.

––no–allow–label–createDo not allow the %label directive to create new tokens. Note that this requires
that the token being labelled is either a character literal or a %token directive creating the named
token has preceded the %label directive.

––no–arg–countDo not check argument counts for rules. LLnextgen checks whether a rule is used with
the same number of arguments as it is defined. LLnextgen also checks that any rules for which a
%start directive is specified, the number of arguments is 0.

––no–eof–zeroDo not use 0 as end-of-file token.(f)lex(1) uses 0 as the end-of-file token. Other lexical-
analyser generators may use –1, and may use 0 for something else (e.g. the nul character).

––no–init–llretval Do not initialiseLLretval with 0 bytes. Note that you have to take care of initialisation
of LLretval yourself when using this option.

––no–line–directivesDo not generate#linedirectives in the output. This means all errors will be reported
relative to the output file. By defaultLLnextgen generates#line directives to make the C compiler
generate errors relative to theLLnextgen input file.

––no–llreissueDo not generate theLLreissuevariable, which is used to indicate when a token should be
reissued by the lexical analyser.

28

––no–prototypes–headerDo not generate prototypes for the parser and other functions in the header file.

––not–only–reachableDo not only analyse reachable rules.LLnextgen by default does not take unreach-
able rules into account when doing conflict analysis, as these can cause spurious conflicts. However,
if the unreachable rules will be used in the future, one mightalready want to be notified of problems
with these rules.LLgen by default does analyse unreachable rules.
Note: in the case where a rule is unreachable because the onlyalternative of another reachable rule
that mentions it is never chosen (because of a %avoid directive), the rule is still deemed reachable for
the analysis. The only way to avoid this behaviour is by doingthe complete analysis twice, which is
an excessive amount of work to do for a very rare case.

––reentrant Generate a reentrant parser. By default,LLnextgen generates non-reentrant parsers. A reen-
trant parser can be called from itself, but not from another thread. Use ––thread–safe to generate a
thread-safe parser.
Note that when multiple parsers are specified in one grammar (using multiple %start directives), and
one of these parsers calls another, either the ––reentrant option or the ––thread-safe option is also
required. If these parsers are only called when none of the others is running, the option is not neces-
sary.
Use only in combination with a reentrant lexical analyser.

––show–dir Show directory names of source files in error and warning messages. These are usually
omitted for readability, but may sometimes be necessary fortracing errors.

––thread–safeGenerate a thread-safe parser. Thread-safe parsers can be run in parallel in different threads
of the same program. The interface of a thread-safe parser isdifferent from the regular (and then
reentrant) version. See the detailed manual for more details.

––token–pattern=pattern Specify a regular expression to match with unknown identifiers used in the
grammar. If an unknown identifier matches,LLnextgen will generate a token declaration for the
identifier. This option is primarily implemented to aid in the first stages of development, to allow
for quick testing for conflicts without having to specify allthe tokens yet. A list of tokens can be
generated with the––dump–tokensoption.
Note: this option is not always available. It requires the POSIX regex API. If the POSIX regex API
is not available on your platform, or theLLnextgen binary was compiled without support for the
API, you will not be able to use this option.

By runningLLnextgen using the nameLLgen, LLnextgen goes intoLLgen-mode. This is implemented
by turning off all default extra functionality likeLLreissue, and disallowing all extensions to theLLgen
language. When running asLLgen, LLnextgen accepts the following options fromLLgen:

–a Ignored.LLnextgen only generates ANSI C.

–hnum Ignored.LLnextgen leaves optimisation of jump tables entirely up to the C–compiler.

–j[num] Ignored.LLnextgen leaves optimisation of jump tables entirely up to the C–compiler.

–l[num] Ignored.LLnextgen leaves optimisation of jump tables entirely up to the C–compiler.

–v Increase the verbosity level. See the description of the–v option above for details.

–w Suppress all warnings.

–x Ignored.LLnextgen will only generate token sets in LL.output. The extensive error-reporting mech-
anisms inLLnextgen make this feature obsolete.

LLnextgen cannot create parsers with non-correcting error-recovery. Therefore, using the–n or –soptions
will causeLLnextgen to print an error message and exit.

29

COMPATIBILITY WITH LLGEN

At this time the basicLLgen functionality is implemented. This includes everything apart from the ex-
tended user error-handling with the %onerror directive andthe non-correcting error-recovery.

Although I’ve tried to copy the behaviour ofLLgen accurately, I have implemented some aspects slightly
differently. The following is a list of the differences in behaviour betweenLLgen andLLnextgen:

• LLgen generated both K&R style C code and ANSI C code.LLnextgen only supports generation
of ANSI C code.

• There is a minor difference in the determination of the default choices.LLnextgen simply chooses
the first production with the shortest possible terminal production, whileLLgen also takes the com-
plexity in terms of non-terminals and terms into account. There is also a minor difference when
there is more than one shortest alternative and some of them are marked with %avoid. Both differ-
ences are not very important as the user can specify which alternative should be the default, thereby
circumventing the differences in the algorithms.

• The default behaviour of generating one output C file per input and Lpars.c and Lpars.h has been
changed in favour of generating one .c file and one .h file. The rationale given for creating multiple
output files in the first place was that it would reduce the compilation time for the generated parser.
As computation power has become much more abundant this feature is no longer necessary, and
the difficult interaction with the make program makes it undesirable. TheLLgen behaviour is still
supported through a command-line switch.

• in LLgen one could have a parser and a %first macro with the same name.LLnextgen forbids this,
as it leads to name collisions in the new file naming scheme. For the oldLLgen file naming scheme
it could also easily lead to name collisions, although they could be circumvented by not mentioning
the parser in any of the C code in the .g files.

• LLgen names the labels it generates LX, where X is a number.LLnextgen names these LLX.

• LLgen parsers are always reentrant. As this feature is not used very often,LLnextgen parsers are
non-reentrant unless the option––reentrant is used.

Furthermore,LLnextgen has many extended features, for easier development.

BUGS

If you think you have found a bug, please check that you are using the latest version ofLLnextgen
[http://os.ghalkes.nl/LLnextgen]. When reporting bugs,please include a minimal grammar that demon-
strates the problem.

AUTHOR

G.P. Halkes<llnextgen@ghalkes.nl>

COPYRIGHT

Copyright c© 2005-2008 G.P. Halkes
LLnextgen is licensed under the GNU General Public License version 3.

30

For more details on the license, see the file COPYING in the documentation directory. On Un*x systems
this is usually /usr/share/doc/LLnextgen-0.5.5.

SEE ALSO

LLgen(1), bison(1), yacc(1), lex(1), flex(1).

A detailed manual forLLnextgen is available as part of the distribution. It includes the syntax for the
grammar files, details on how to use the generated parser in your programs, and details on the workings of
the generated parsers. This manual can be found in the documentation directory. On Un*x systems this is
usually /usr/share/doc/LLnextgen-0.5.5.

31

